Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
P
postgres-lambda-diff
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jakob Huber
postgres-lambda-diff
Commits
cc9bcbc8
Commit
cc9bcbc8
authored
19 years ago
by
Tom Lane
Browse files
Options
Downloads
Patches
Plain Diff
Improve outer-join-deduction logic to be able to propagate equalities
through multiple join clauses.
parent
76eca0ec
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/backend/optimizer/path/pathkeys.c
+202
-157
202 additions, 157 deletions
src/backend/optimizer/path/pathkeys.c
with
202 additions
and
157 deletions
src/backend/optimizer/path/pathkeys.c
+
202
−
157
View file @
cc9bcbc8
...
@@ -11,7 +11,7 @@
...
@@ -11,7 +11,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/optimizer/path/pathkeys.c,v 1.
69
2005/07/0
2 23:00:40
tgl Exp $
* $PostgreSQL: pgsql/src/backend/optimizer/path/pathkeys.c,v 1.
70
2005/07/0
3 18:26:32
tgl Exp $
*
*
*-------------------------------------------------------------------------
*-------------------------------------------------------------------------
*/
*/
...
@@ -35,6 +35,10 @@ static PathKeyItem *makePathKeyItem(Node *key, Oid sortop, bool checkType);
...
@@ -35,6 +35,10 @@ static PathKeyItem *makePathKeyItem(Node *key, Oid sortop, bool checkType);
static
void
generate_outer_join_implications
(
PlannerInfo
*
root
,
static
void
generate_outer_join_implications
(
PlannerInfo
*
root
,
List
*
equi_key_set
,
List
*
equi_key_set
,
Relids
*
relids
);
Relids
*
relids
);
static
void
sub_generate_join_implications
(
PlannerInfo
*
root
,
List
*
equi_key_set
,
Relids
*
relids
,
Node
*
item1
,
Oid
sortop1
,
Relids
item1_relids
);
static
void
process_implied_const_eq
(
PlannerInfo
*
root
,
static
void
process_implied_const_eq
(
PlannerInfo
*
root
,
List
*
equi_key_set
,
Relids
*
relids
,
List
*
equi_key_set
,
Relids
*
relids
,
Node
*
item1
,
Oid
sortop1
,
Node
*
item1
,
Oid
sortop1
,
...
@@ -250,65 +254,65 @@ generate_implied_equalities(PlannerInfo *root)
...
@@ -250,65 +254,65 @@ generate_implied_equalities(PlannerInfo *root)
i1
++
;
i1
++
;
}
}
/*
* If we have constant(s) and outer joins, try to propagate the
* constants through outer-join quals.
*/
if
(
have_consts
&&
root
->
hasOuterJoins
)
generate_outer_join_implications
(
root
,
curset
,
relids
);
/*
* A set containing only two items cannot imply any equalities
* beyond the one that created the set, so we can skip it.
*/
if
(
nitems
<
3
)
continue
;
/*
/*
* Match each item in the set with all that appear after it (it's
* Match each item in the set with all that appear after it (it's
* sufficient to generate A=B, need not process B=A too).
* sufficient to generate A=B, need not process B=A too).
*
* A set containing only two items cannot imply any equalities
* beyond the one that created the set, so we can skip this
* processing in that case.
*/
*/
i1
=
0
;
if
(
nitems
>=
3
)
foreach
(
ptr1
,
curset
)
{
{
PathKeyItem
*
item1
=
(
PathKeyItem
*
)
lfirst
(
ptr1
);
i1
=
0
;
bool
i1_is_variable
=
!
bms_is_empty
(
relids
[
i1
]);
foreach
(
ptr1
,
curset
)
ListCell
*
ptr2
;
int
i2
=
i1
+
1
;
for_each_cell
(
ptr2
,
lnext
(
ptr1
))
{
{
PathKeyItem
*
item2
=
(
PathKeyItem
*
)
lfirst
(
ptr2
);
PathKeyItem
*
item1
=
(
PathKeyItem
*
)
lfirst
(
ptr1
);
bool
i2_is_variable
=
!
bms_is_empty
(
relids
[
i2
]);
bool
i1_is_variable
=
!
bms_is_empty
(
relids
[
i1
]);
ListCell
*
ptr2
;
int
i2
=
i1
+
1
;
/*
for_each_cell
(
ptr2
,
lnext
(
ptr1
))
* If it's "const = const" then just ignore it altogether.
* There is no place in the restrictinfo structure to
* store it. (If the two consts are in fact unequal, then
* propagating the comparison to Vars will cause us to
* produce zero rows out, as expected.)
*/
if
(
i1_is_variable
||
i2_is_variable
)
{
{
PathKeyItem
*
item2
=
(
PathKeyItem
*
)
lfirst
(
ptr2
);
bool
i2_is_variable
=
!
bms_is_empty
(
relids
[
i2
]);
/*
/*
* Tell process_implied_equality to delete the clause,
* If it's "const = const" then just ignore it altogether.
* not add it, if it's "var = var" and we have
* There is no place in the restrictinfo structure to
* constants present in the list.
* store it. (If the two consts are in fact unequal, then
* propagating the comparison to Vars will cause us to
* produce zero rows out, as expected.)
*/
*/
bool
delete_it
=
(
have_consts
&&
if
(
i1_is_variable
||
i2_is_variable
)
i1_is_variable
&&
{
i2_is_variable
);
/*
* Tell process_implied_equality to delete the clause,
process_implied_equality
(
root
,
* not add it, if it's "var = var" and we have
item1
->
key
,
item2
->
key
,
* constants present in the list.
item1
->
sortop
,
item2
->
sortop
,
*/
relids
[
i1
],
relids
[
i2
],
bool
delete_it
=
(
have_consts
&&
delete_it
);
i1_is_variable
&&
i2_is_variable
);
process_implied_equality
(
root
,
item1
->
key
,
item2
->
key
,
item1
->
sortop
,
item2
->
sortop
,
relids
[
i1
],
relids
[
i2
],
delete_it
);
}
i2
++
;
}
}
i
2
++
;
i
1
++
;
}
}
i1
++
;
}
}
/*
* If we have constant(s) and outer joins, try to propagate the
* constants through outer-join quals.
*/
if
(
have_consts
&&
root
->
hasOuterJoins
)
generate_outer_join_implications
(
root
,
curset
,
relids
);
}
}
}
}
...
@@ -362,118 +366,154 @@ generate_outer_join_implications(PlannerInfo *root,
...
@@ -362,118 +366,154 @@ generate_outer_join_implications(PlannerInfo *root,
List
*
equi_key_set
,
List
*
equi_key_set
,
Relids
*
relids
)
Relids
*
relids
)
{
{
ListCell
*
l1
;
ListCell
*
l
;
int
i
=
0
;
/*
Examine each mergejoinable outer-join clause with OUTERVAR on lef
t */
/*
Process each non-constant element of equi_key_se
t */
foreach
(
l
1
,
root
->
left_join_clau
se
s
)
foreach
(
l
,
equi_key_
se
t
)
{
{
RestrictInfo
*
rinfo
=
(
RestrictInfo
*
)
lfirst
(
l1
);
PathKeyItem
*
item1
=
(
PathKeyItem
*
)
lfirst
(
l
);
Node
*
leftop
=
get_leftop
(
rinfo
->
clause
);
Node
*
rightop
=
get_rightop
(
rinfo
->
clause
);
ListCell
*
l2
;
/* Scan to see if it matches any element of equi_key_set */
if
(
!
bms_is_empty
(
relids
[
i
]))
foreach
(
l2
,
equi_key_set
)
{
{
PathKeyItem
*
item1
=
(
PathKeyItem
*
)
lfirst
(
l2
);
sub_generate_join_implications
(
root
,
equi_key_set
,
relids
,
item1
->
key
,
item1
->
sortop
,
relids
[
i
]);
}
i
++
;
}
}
if
(
equal
(
leftop
,
item1
->
key
)
&&
/*
rinfo
->
left_sortop
==
item1
->
sortop
)
* sub_generate_join_implications
{
* Propagate a constant equality through outer join clauses.
/*
*
* Yes, so find constant member(s) of set and generate
* The item described by item1/sortop1/item1_relids has been determined
* implied INNERVAR = CONSTANT
* to be equal to the constant(s) listed in equi_key_set. Recursively
*/
* trace out the implications of this.
process_implied_const_eq
(
root
,
equi_key_set
,
relids
,
*
rightop
,
* equi_key_set and relids are as for generate_outer_join_implications.
rinfo
->
right_sortop
,
*/
rinfo
->
right_relids
,
static
void
false
);
sub_generate_join_implications
(
PlannerInfo
*
root
,
/*
List
*
equi_key_set
,
Relids
*
relids
,
* We can remove the explicit outer join qual, too,
Node
*
item1
,
Oid
sortop1
,
Relids
item1_relids
)
* since we now have tests forcing each of its sides
* to the same value.
*/
process_implied_equality
(
root
,
leftop
,
rightop
,
rinfo
->
left_sortop
,
rinfo
->
right_sortop
,
rinfo
->
left_relids
,
rinfo
->
right_relids
,
true
);
/* No need to match against remaining set members */
{
break
;
ListCell
*
l
;
}
/*
* Examine each mergejoinable outer-join clause with OUTERVAR on left,
* looking for an OUTERVAR identical to item1
*/
foreach
(
l
,
root
->
left_join_clauses
)
{
RestrictInfo
*
rinfo
=
(
RestrictInfo
*
)
lfirst
(
l
);
Node
*
leftop
=
get_leftop
(
rinfo
->
clause
);
if
(
equal
(
leftop
,
item1
)
&&
rinfo
->
left_sortop
==
sortop1
)
{
/*
* Match, so find constant member(s) of set and generate
* implied INNERVAR = CONSTANT
*/
Node
*
rightop
=
get_rightop
(
rinfo
->
clause
);
process_implied_const_eq
(
root
,
equi_key_set
,
relids
,
rightop
,
rinfo
->
right_sortop
,
rinfo
->
right_relids
,
false
);
/*
* We can remove explicit tests of this outer-join qual, too,
* since we now have tests forcing each of its sides
* to the same value.
*/
process_implied_equality
(
root
,
leftop
,
rightop
,
rinfo
->
left_sortop
,
rinfo
->
right_sortop
,
rinfo
->
left_relids
,
rinfo
->
right_relids
,
true
);
/*
* And recurse to see if we can deduce anything from
* INNERVAR = CONSTANT
*/
sub_generate_join_implications
(
root
,
equi_key_set
,
relids
,
rightop
,
rinfo
->
right_sortop
,
rinfo
->
right_relids
);
}
}
}
}
/*
Examine each mergejoinable outer-join
clause with OUTERVAR on right */
/*
The same, looking at
clause
s
with OUTERVAR on right */
foreach
(
l
1
,
root
->
right_join_clauses
)
foreach
(
l
,
root
->
right_join_clauses
)
{
{
RestrictInfo
*
rinfo
=
(
RestrictInfo
*
)
lfirst
(
l1
);
RestrictInfo
*
rinfo
=
(
RestrictInfo
*
)
lfirst
(
l
);
Node
*
leftop
=
get_leftop
(
rinfo
->
clause
);
Node
*
rightop
=
get_rightop
(
rinfo
->
clause
);
Node
*
rightop
=
get_rightop
(
rinfo
->
clause
);
ListCell
*
l2
;
/* Scan to see if it matches any element of equi_key_set */
if
(
equal
(
rightop
,
item1
)
&&
rinfo
->
right_sortop
==
sortop1
)
foreach
(
l2
,
equi_key_set
)
{
{
PathKeyItem
*
item1
=
(
PathKeyItem
*
)
lfirst
(
l2
);
/*
* Match, so find constant member(s) of set and generate
if
(
equal
(
rightop
,
item1
->
key
)
&&
* implied INNERVAR = CONSTANT
rinfo
->
right_sortop
==
item1
->
sortop
)
*/
{
Node
*
leftop
=
get_leftop
(
rinfo
->
clause
);
/*
* Yes, so find constant member(s) of set and generate
* implied INNERVAR = CONSTANT
*/
process_implied_const_eq
(
root
,
equi_key_set
,
relids
,
leftop
,
rinfo
->
left_sortop
,
rinfo
->
left_relids
,
false
);
/*
* We can remove the explicit outer join qual, too,
* since we now have tests forcing each of its sides
* to the same value.
*/
process_implied_equality
(
root
,
leftop
,
rightop
,
rinfo
->
left_sortop
,
rinfo
->
right_sortop
,
rinfo
->
left_relids
,
rinfo
->
right_relids
,
true
);
/* No need to match against remaining set members */
process_implied_const_eq
(
root
,
equi_key_set
,
relids
,
break
;
leftop
,
}
rinfo
->
left_sortop
,
rinfo
->
left_relids
,
false
);
/*
* We can remove explicit tests of this outer-join qual, too,
* since we now have tests forcing each of its sides
* to the same value.
*/
process_implied_equality
(
root
,
leftop
,
rightop
,
rinfo
->
left_sortop
,
rinfo
->
right_sortop
,
rinfo
->
left_relids
,
rinfo
->
right_relids
,
true
);
/*
* And recurse to see if we can deduce anything from
* INNERVAR = CONSTANT
*/
sub_generate_join_implications
(
root
,
equi_key_set
,
relids
,
leftop
,
rinfo
->
left_sortop
,
rinfo
->
left_relids
);
}
}
}
}
/* Examine each mergejoinable full-join clause */
/*
foreach
(
l1
,
root
->
full_join_clauses
)
* Only COALESCE(x,y) items can possibly match full joins
*/
if
(
IsA
(
item1
,
CoalesceExpr
))
{
{
RestrictInfo
*
rinfo
=
(
RestrictInfo
*
)
lfirst
(
l1
);
CoalesceExpr
*
cexpr
=
(
CoalesceExpr
*
)
item1
;
Node
*
leftop
=
get_leftop
(
rinfo
->
clause
);
Node
*
cfirst
;
Node
*
rightop
=
get_rightop
(
rinfo
->
clause
);
Node
*
csecond
;
int
i1
=
0
;
ListCell
*
l2
;
/* Scan to see if it matches any element of equi_key_set */
if
(
list_length
(
cexpr
->
args
)
!=
2
)
foreach
(
l2
,
equi_key_set
)
return
;
cfirst
=
(
Node
*
)
linitial
(
cexpr
->
args
);
csecond
=
(
Node
*
)
lsecond
(
cexpr
->
args
);
/*
* Examine each mergejoinable full-join clause, looking for a
* clause of the form "x = y" matching the COALESCE(x,y) expression
*/
foreach
(
l
,
root
->
full_join_clauses
)
{
{
PathKeyItem
*
item1
=
(
PathKeyItem
*
)
lfirst
(
l2
);
RestrictInfo
*
rinfo
=
(
RestrictInfo
*
)
lfirst
(
l
);
CoalesceExpr
*
cexpr
=
(
CoalesceExpr
*
)
item1
->
key
;
Node
*
leftop
=
get_leftop
(
rinfo
->
clause
);
Node
*
rightop
=
get_rightop
(
rinfo
->
clause
);
/*
/*
* Try to match a pathkey containing a COALESCE() expression
* We can assume the COALESCE() inputs are in the same order
* to the join clause. We can assume the COALESCE() inputs
* as the join clause, since both were automatically generated
* are in the same order as the join clause, since both were
* in the cases we care about.
* automatically generated in the cases we care about.
*
*
* XXX currently this may fail to match in cross-type cases
* XXX currently this may fail to match in cross-type cases
* because the COALESCE will contain typecast operations while
* because the COALESCE will contain typecast operations while
...
@@ -482,15 +522,13 @@ generate_outer_join_implications(PlannerInfo *root,
...
@@ -482,15 +522,13 @@ generate_outer_join_implications(PlannerInfo *root,
* Is it OK to strip implicit coercions from the COALESCE
* Is it OK to strip implicit coercions from the COALESCE
* arguments? What of the sortops in such cases?
* arguments? What of the sortops in such cases?
*/
*/
if
(
IsA
(
cexpr
,
CoalesceExpr
)
&&
if
(
equal
(
leftop
,
cfirst
)
&&
list_length
(
cexpr
->
args
)
==
2
&&
equal
(
rightop
,
csecond
)
&&
equal
(
leftop
,
(
Node
*
)
linitial
(
cexpr
->
args
))
&&
rinfo
->
left_sortop
==
sortop1
&&
equal
(
rightop
,
(
Node
*
)
lsecond
(
cexpr
->
args
))
&&
rinfo
->
right_sortop
==
sortop1
)
rinfo
->
left_sortop
==
item1
->
sortop
&&
rinfo
->
right_sortop
==
item1
->
sortop
)
{
{
/*
/*
*
Yes
, so find constant member(s) of set and generate
*
Match
, so find constant member(s) of set and generate
* implied LEFTVAR = CONSTANT
* implied LEFTVAR = CONSTANT
*/
*/
process_implied_const_eq
(
root
,
equi_key_set
,
relids
,
process_implied_const_eq
(
root
,
equi_key_set
,
relids
,
...
@@ -506,28 +544,37 @@ generate_outer_join_implications(PlannerInfo *root,
...
@@ -506,28 +544,37 @@ generate_outer_join_implications(PlannerInfo *root,
false
);
false
);
/* ... and remove COALESCE() = CONSTANT */
/* ... and remove COALESCE() = CONSTANT */
process_implied_const_eq
(
root
,
equi_key_set
,
relids
,
process_implied_const_eq
(
root
,
equi_key_set
,
relids
,
item1
->
key
,
item1
,
item1
->
sortop
,
sortop
1
,
relids
[
i1
]
,
item1_
relids
,
true
);
true
);
/*
/*
* We can remove
the
explicit outer
join qual, too,
* We can remove explicit
tests of this
outer
-
join qual, too,
* since we now have tests forcing each of its sides
* since we now have tests forcing each of its sides
* to the same value.
* to the same value.
*/
*/
process_implied_equality
(
root
,
process_implied_equality
(
root
,
leftop
,
leftop
,
rightop
,
rightop
,
rinfo
->
left_sortop
,
rinfo
->
left_sortop
,
rinfo
->
right_sortop
,
rinfo
->
right_sortop
,
rinfo
->
left_relids
,
rinfo
->
left_relids
,
rinfo
->
right_relids
,
rinfo
->
right_relids
,
true
);
true
);
/*
* And recurse to see if we can deduce anything from
* LEFTVAR = CONSTANT
*/
sub_generate_join_implications
(
root
,
equi_key_set
,
relids
,
leftop
,
rinfo
->
left_sortop
,
rinfo
->
left_relids
);
/* ... and RIGHTVAR = CONSTANT */
sub_generate_join_implications
(
root
,
equi_key_set
,
relids
,
rightop
,
rinfo
->
right_sortop
,
rinfo
->
right_relids
);
/* No need to match against remaining set members */
break
;
}
}
i1
++
;
}
}
}
}
}
}
...
@@ -537,10 +584,8 @@ generate_outer_join_implications(PlannerInfo *root,
...
@@ -537,10 +584,8 @@ generate_outer_join_implications(PlannerInfo *root,
* Apply process_implied_equality with the given item and each
* Apply process_implied_equality with the given item and each
* pseudoconstant member of equi_key_set.
* pseudoconstant member of equi_key_set.
*
*
* This is just a subroutine to save some cruft in
* equi_key_set and relids are as for generate_outer_join_implications,
* generate_outer_join_implications. equi_key_set and relids are as in
* the other parameters as for process_implied_equality.
* generate_outer_join_implications, the other parameters as for
* process_implied_equality.
*/
*/
static
void
static
void
process_implied_const_eq
(
PlannerInfo
*
root
,
List
*
equi_key_set
,
Relids
*
relids
,
process_implied_const_eq
(
PlannerInfo
*
root
,
List
*
equi_key_set
,
Relids
*
relids
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment