Skip to content
Snippets Groups Projects
Select Git revision
  • benchmark-tools
  • postgres-lambda
  • master default
  • REL9_4_25
  • REL9_5_20
  • REL9_6_16
  • REL_10_11
  • REL_11_6
  • REL_12_1
  • REL_12_0
  • REL_12_RC1
  • REL_12_BETA4
  • REL9_4_24
  • REL9_5_19
  • REL9_6_15
  • REL_10_10
  • REL_11_5
  • REL_12_BETA3
  • REL9_4_23
  • REL9_5_18
  • REL9_6_14
  • REL_10_9
  • REL_11_4
23 results

index.html

Blame
  • index.html 6.89 KiB
    <HTML>
    <HEAD>
    <TITLE>How PostgreSQL Processes a Query</TITLE>
    </HEAD>
    <BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#FF0000" VLINK="#A00000" ALINK="#0000FF">
    <H1 ALIGN=CENTER>
    How PostgreSQL Processes a Query
    </H1>
    <H2 ALIGN=CENTER>
    by Bruce Momjian
    </H2>
    <P>
    A query comes to the backend via data packets arriving through TCP/IP
    or Unix Domain sockets.   It is loaded into a string, and passed to
    the
    <A HREF="../../backend/parser">parser,</A> where the lexical scanner,
    <A HREF="../../backend/parser/scan.l">scan.l,</A>
    breaks the query up into tokens(words).  The parser
    uses
    <A HREF="../../backend/parser/gram.y">gram.y</A> and the tokens to
    identify the query type, and load the proper query-specific structure,
    like <A HREF="../../include/nodes/parsenodes.h">CreateStmt</A> or <A
    HREF="../../include/nodes/parsenodes.h">SelectStmt.</A>
    <P>
    The query is then identified as a <I>Utility</I> query or a more complex
    query.  A <I>Utility</I> query is processed by a query-specific function
    in <A HREF="../../backend/commands"> commands.</A> A complex query, like
    <CODE>SELECT, UPDATE,</CODE> and
    <CODE>DELETE</CODE> requires much more handling.
    <P>
    The parser takes a complex query, and creates a
    <A HREF="../../include/nodes/parsenodes.h">Query</A> structure that
    contains all the elements used by complex queries.  Query.qual holds the
    <CODE>WHERE</CODE> clause qualification, which is filled in by
    <A HREF="../../backend/parser/parse_clause.c">transformWhereClause().</A>
    Each table referenced in the query is represented by a <A
    HREF="../../include/nodes/parsenodes.h"> RangeTableEntry,</A> and they
    are linked together to form the <I>range table</I> of the query, which is
    generated by <A HREF="../../backend/parser/parse_clause.c">
    makeRangeTable().</A>  Query.rtable holds the query's range table.
    <P>
    Certain queries, like <CODE>SELECT,</CODE> return columns of data.  Other
    queries, like <CODE>INSERT</CODE> and <CODE>UPDATE,</CODE> specify the columns
    modified by the query.  These column references are converted to <A
    HREF="../../include/nodes/primnodes.h">Resdom</A> entries, which are
    linked together to make up the <I>target list</I> of the query. The
    target list is stored in Query.targetList, which is generated by
    <A HREF="../../backend/parser/parse_target.c">transformTargetList().</A>
    <P>
    Other query elements, like aggregates(<CODE>SUM()</CODE>), <CODE>GROUP BY,</CODE>
    and <CODE>ORDER BY</CODE> are also stored in their own Query fields.
    <P>
    The next step is for the Query to be modified by any <CODE>VIEWS</CODE> or
    <CODE>RULES</CODE> that may apply to the query.  This is performed by the <A
    HREF="../../backend/rewrite">rewrite</A> system.
    <P>
    The <A HREF="../../backend/optimizer">optimizer</A> takes the Query
    structure and generates an optimal <A
    HREF="../..//include/nodes/plannodes.h">Plan,</A> which contains the
    operations to be performed to execute the query.  The <A
    HREF="../../backend/optimizer/path">path</A> module determines the best
    table join order and join type of each table in the RangeTable, using
    Query.qual(<CODE>WHERE</CODE> clause) to consider optimal index usage.
    <P>
    The Plan is then passed to the <A
    HREF="../../backend/executor">executor</A> for execution, and the result
    returned to the client.
    <P>
    There are many other modules that support this basic functionality.
    They can be accessed by clicking on the flowchart.
    <P>
    <HR>
    <P>
    <CENTER>
    <EM><BIG>
    Click on an item to see more detail or
    <A HREF="backend_dirs.html">click</A> to see the full index.
    </BIG></EM>
    <BR>
    <BR>
    <IMG src="flow.jpg" usemap="#flowmap" alt="flowchart">
    </CENTER>
    <MAP name="flowmap">
    <AREA COORDS="290,10,450,50" HREF="backend_dirs.html#main">
    <AREA COORDS="550,10,710,50" HREF="backend_dirs.html#bootstrap">
    <AREA COORDS="290,90,450,130," HREF="backend_dirs.html#postmaster">
    <AREA COORDS="550,90,710,130," HREF="backend_dirs.html#libpq">
    <AREA COORDS="290,170,450,210" HREF="backend_dirs.html#tcop">
    <AREA COORDS="550,170,710,210" HREF="backend_dirs.html#tcop">
    <AREA COORDS="290,270,450,310" HREF="backend_dirs.html#parser">
    <AREA COORDS="290,350,450,390" HREF="backend_dirs.html#tcop">
    <AREA COORDS="290,430,450,470" HREF="backend_dirs.html#optimizer">
    <AREA COORDS="290,510,450,550" HREF="backend_dirs.html#optimizer/plan">
    <AREA COORDS="290,570,450,630" HREF="backend_dirs.html#executor">
    <AREA COORDS="550,350,710,390" HREF="backend_dirs.html#commands">
    <AREA COORDS="10,330,170,370" HREF="backend_dirs.html#access">
    <AREA COORDS="10,390,170,430" HREF="backend_dirs.html#catalog">
    <AREA COORDS="10,450,170,490" HREF="backend_dirs.html#utils">
    <AREA COORDS="10,510,170,550" HREF="backend_dirs.html#nodes">
    <AREA COORDS="10,570,170,610" HREF="backend_dirs.html#storage">
    </MAP>
    <BR>
    <P>
    <HR>
    <P>
    Another area of interest is the shared memory area, which contains data
    accessable to all backends.  It has table recently used data/index
    blocks, locks, backend information, and lookup tables for these
    structures:
    <UL> 
    <LI>ShmemIndex - lookup shared memory addresses using structure names
    <LI><A HREF="../../include/storage/buf_internals.h">Buffer
    Descriptor</A> - control header for buffer cache block
    <LI><A HREF="../../include/storage/buf_internals.h">Buffer Block</A> -
    data/index buffer cache block
    <LI>Shared Buffer Lookup Table - lookup of buffer cache block addresses using
    table name and block number(<A HREF="../../include/storage/buf_internals.h">
    BufferTag</A>)
    <LI>MultiLevelLockTable (ctl) - control structure for
    each locking method.  Currently, only multi-level locking is used(<A
    HREF="../../include/storage/lock.h">LOCKMETHODCTL</A>).
    <LI>MultiLevelLockTable (lock hash) - the <A
    HREF="../../include/storage/lock.h">LOCK</A> structure, looked up using
    relation, database object ids(<A
    HREF="../../include/storage/lock.h">LOCKTAG)</A>.  The lock table structure contains the
    lock modes(read/write or shared/exclusive) and circular linked list of backends (<A
    HREF="../../include/storage/proc.h">PROC</A> structure pointers) waiting
    on the lock.
    <LI>MultiLevelLockTable (xid hash) - lookup of LOCK structure address
    using transaction id, LOCK address.  It is used to quickly check if the
    current transaction already has any locks on a table, rather than having
    to search through all the held locks.  It also stores the modes
    (read/write) of the locks held by the current transaction.  The returned
    <A HREF="../../include/storage/lock.h">XIDLookupEnt</A> structure also
    contains a pointer to the backend's PROC.lockQueue.
    <LI><A HREF="../../include/storage/proc.h">Proc Header</A> - information
    about each backend, including locks held/waiting, indexed by process id
    </UL>
    Each data structure is created by calling <A
    HREF="../../backend/storage/ipc/shmem.c">ShmemInitStruct(),</A> and
    the lookups are created by
    <A HREF="../../backend/storage/ipc/shmem.c">ShmemInitHash().</A>
    <P>
    <HR SIZE="2" NOSHADE>
    <SMALL>
    <ADDRESS>
    Maintainer:	Bruce Momjian (<A
    HREF="mailto:maillist@candle.pha.pa.us">maillist@candle.pha.pa.us</A>)<BR>
    Last updated:		Tue Dec  9 17:56:08 EST 1997
    </ADDRESS>
    </SMALL>
    </BODY>
    </HTML>