Skip to content
Snippets Groups Projects
Select Git revision
  • benchmark-tools
  • postgres-lambda
  • master default
  • REL9_4_25
  • REL9_5_20
  • REL9_6_16
  • REL_10_11
  • REL_11_6
  • REL_12_1
  • REL_12_0
  • REL_12_RC1
  • REL_12_BETA4
  • REL9_4_24
  • REL9_5_19
  • REL9_6_15
  • REL_10_10
  • REL_11_5
  • REL_12_BETA3
  • REL9_4_23
  • REL9_5_18
  • REL9_6_14
  • REL_10_9
  • REL_11_4
23 results

_int.c

Blame
  • _int.c 56.44 KiB
    /******************************************************************************
      This file contains routines that can be bound to a Postgres backend and
      called by the backend in the process of processing queries.  The calling
      format for these routines is dictated by Postgres architecture.
    ******************************************************************************/
    
    /*
    #define BS_DEBUG
    #define GIST_DEBUG
    #define GIST_QUERY_DEBUG
    */
    
    #include "postgres.h"
    
    #include <float.h>
    
    #include "catalog/pg_type.h"
    #include "access/gist.h"
    #include "access/itup.h"
    #include "access/rtree.h"
    #include "catalog/pg_type.h"
    #include "utils/elog.h"
    #include "utils/palloc.h"
    #include "utils/array.h"
    #include "utils/builtins.h"
    #include "storage/bufpage.h"
    #include "lib/stringinfo.h"
    
    /* number ranges for compression */
    #define MAXNUMRANGE 100
    
    #define max(a,b)		((a) >	(b) ? (a) : (b))
    #define min(a,b)		((a) <= (b) ? (a) : (b))
    #define abs(a)			((a) <	(0) ? -(a) : (a))
    
    /* dimension of array */
    #define NDIM 1
    
    /*
     * flags for gist__int_ops, use ArrayType->flags
     * which is unused (see array.h)
     */
    #define LEAFKEY		(1<<31)
    #define ISLEAFKEY(x)	( ((ArrayType*)(x))->flags & LEAFKEY )
    
    /* useful macros for accessing int4 arrays */
    #define ARRPTR(x)  ( (int4 *) ARR_DATA_PTR(x) )
    #define ARRNELEMS(x)  ArrayGetNItems( ARR_NDIM(x), ARR_DIMS(x))
    
    #define ARRISVOID(x) ( (x) ? ( ( ARR_NDIM(x) == NDIM ) ? ( ( ARRNELEMS( x ) ) ? 0 : 1 ) : ( ( ARR_NDIM(x) ) ? (elog(ERROR,"Array is not one-dimensional: %d dimensions",ARRNELEMS( x )),1) : 0 )  ) : 0 )
    
    #define SORT(x) \
    	do { \
    		 if ( ARRNELEMS( x ) > 1 ) \
    			isort( ARRPTR( x ), ARRNELEMS( x ) ); \
    	} while(0)
    
    #define PREPAREARR(x) \
    	do { \
    		 if ( ARRNELEMS( x ) > 1 ) \
    			if ( isort( ARRPTR( x ), ARRNELEMS( x ) ) ) \
    				x = _int_unique( x ); \
    	} while(0)
    
    /* "wish" function */
    #define WISH_F(a,b,c) (double)( -(double)(((a)-(b))*((a)-(b))*((a)-(b)))*(c) )
    
    
    /* bigint defines */
    #define BITBYTE 8
    #define SIGLENINT  64			/* >122 => key will toast, so very slow!!! */
    #define SIGLEN	( sizeof(int)*SIGLENINT )
    #define SIGLENBIT (SIGLEN*BITBYTE)
    
    typedef char BITVEC[SIGLEN];
    typedef char *BITVECP;
    
    #define SIGPTR(x)  ( (BITVECP) ARR_DATA_PTR(x) )
    
    
    #define LOOPBYTE(a) \
    		for(i=0;i<SIGLEN;i++) {\
    				a;\
    		}
    
    #define LOOPBIT(a) \
    		for(i=0;i<SIGLENBIT;i++) {\
    				a;\
    		}
    
    /* beware of multiple evaluation of arguments to these macros! */
    #define GETBYTE(x,i) ( *( (BITVECP)(x) + (int)( (i) / BITBYTE ) ) )
    #define GETBITBYTE(x,i) ( (*((char*)(x)) >> (i)) & 0x01 )
    #define CLRBIT(x,i)   GETBYTE(x,i) &= ~( 0x01 << ( (i) % BITBYTE ) )
    #define SETBIT(x,i)   GETBYTE(x,i) |=  ( 0x01 << ( (i) % BITBYTE ) )
    #define GETBIT(x,i) ( (GETBYTE(x,i) >> ( (i) % BITBYTE )) & 0x01 )
    #define HASHVAL(val) (((unsigned int)(val)) % SIGLENBIT)
    #define HASH(sign, val) SETBIT((sign), HASHVAL(val))
    
    
    #ifdef GIST_DEBUG
    static void
    printarr(ArrayType *a, int num)
    {
    	StringInfoData bbb;
    	char	   *cur;
    	int			l;
    	int		   *d;
    
    	d = ARRPTR(a);
    	initStringInfo(&bbb);
    	for (l = 0; l < min(num, ARRNELEMS(a)); l++)
    		appendStringInfo(&bbb, "%d ", d[l]);
    	elog(DEBUG3, "\t\t%s", bbb.data);
    	pfree(bbb.data);
    }
    static void
    printbitvec(BITVEC bv)
    {
    	int			i;
    	char		str[SIGLENBIT + 1];
    
    	str[SIGLENBIT] = '\0';
    	LOOPBIT(str[i] = (GETBIT(bv, i)) ? '1' : '0');
    
    	elog(DEBUG3, "BV: %s", str);
    }
    #endif
    
    /*
    ** types for functions
    */
    typedef ArrayType *(*formarray) (ArrayType *, ArrayType *);
    typedef void (*formfloat) (ArrayType *, float *);
    
    /*
    ** usefull function
    */
    static bool isort(int4 *a, const int len);
    static ArrayType *new_intArrayType(int num);
    static ArrayType *copy_intArrayType(ArrayType *a);
    static ArrayType *resize_intArrayType(ArrayType *a, int num);
    static int	internal_size(int *a, int len);
    static ArrayType *_int_unique(ArrayType *a);
    
    /* common GiST function*/
    static GIST_SPLITVEC *_int_common_picksplit(bytea *entryvec,
    					  GIST_SPLITVEC *v,
    					  formarray unionf,
    					  formarray interf,
    					  formfloat sizef,
    					  float coef);
    static float *_int_common_penalty(GISTENTRY *origentry,
    					GISTENTRY *newentry,
    					float *result,
    					formarray unionf,
    					formfloat sizef);
    static ArrayType *_int_common_union(bytea *entryvec,
    				  int *sizep,
    				  formarray unionf);
    
    /*
    ** GiST support methods
    */
    PG_FUNCTION_INFO_V1(g_int_consistent);
    PG_FUNCTION_INFO_V1(g_int_compress);
    PG_FUNCTION_INFO_V1(g_int_decompress);
    PG_FUNCTION_INFO_V1(g_int_penalty);
    PG_FUNCTION_INFO_V1(g_int_picksplit);
    PG_FUNCTION_INFO_V1(g_int_union);
    PG_FUNCTION_INFO_V1(g_int_same);
    
    Datum		g_int_consistent(PG_FUNCTION_ARGS);
    Datum		g_int_compress(PG_FUNCTION_ARGS);
    Datum		g_int_decompress(PG_FUNCTION_ARGS);
    Datum		g_int_penalty(PG_FUNCTION_ARGS);
    Datum		g_int_picksplit(PG_FUNCTION_ARGS);
    Datum		g_int_union(PG_FUNCTION_ARGS);
    Datum		g_int_same(PG_FUNCTION_ARGS);
    
    
    /*
    ** R-tree support functions
    */
    static bool inner_int_contains(ArrayType *a, ArrayType *b);
    static bool inner_int_overlap(ArrayType *a, ArrayType *b);
    static ArrayType *inner_int_union(ArrayType *a, ArrayType *b);
    static ArrayType *inner_int_inter(ArrayType *a, ArrayType *b);
    static void rt__int_size(ArrayType *a, float *sz);
    
    PG_FUNCTION_INFO_V1(_int_different);
    PG_FUNCTION_INFO_V1(_int_same);
    PG_FUNCTION_INFO_V1(_int_contains);
    PG_FUNCTION_INFO_V1(_int_contained);
    PG_FUNCTION_INFO_V1(_int_overlap);
    PG_FUNCTION_INFO_V1(_int_union);
    PG_FUNCTION_INFO_V1(_int_inter);
    
    Datum		_int_different(PG_FUNCTION_ARGS);
    Datum		_int_same(PG_FUNCTION_ARGS);
    Datum		_int_contains(PG_FUNCTION_ARGS);
    Datum		_int_contained(PG_FUNCTION_ARGS);
    Datum		_int_overlap(PG_FUNCTION_ARGS);
    Datum		_int_union(PG_FUNCTION_ARGS);
    Datum		_int_inter(PG_FUNCTION_ARGS);
    
    /*
    ** _intbig methods
    */
    PG_FUNCTION_INFO_V1(g_intbig_consistent);
    PG_FUNCTION_INFO_V1(g_intbig_compress);
    PG_FUNCTION_INFO_V1(g_intbig_decompress);
    PG_FUNCTION_INFO_V1(g_intbig_penalty);
    PG_FUNCTION_INFO_V1(g_intbig_picksplit);
    PG_FUNCTION_INFO_V1(g_intbig_union);
    PG_FUNCTION_INFO_V1(g_intbig_same);
    
    Datum		g_intbig_consistent(PG_FUNCTION_ARGS);
    Datum		g_intbig_compress(PG_FUNCTION_ARGS);
    Datum		g_intbig_decompress(PG_FUNCTION_ARGS);
    Datum		g_intbig_penalty(PG_FUNCTION_ARGS);
    Datum		g_intbig_picksplit(PG_FUNCTION_ARGS);
    Datum		g_intbig_union(PG_FUNCTION_ARGS);
    Datum		g_intbig_same(PG_FUNCTION_ARGS);
    
    static bool _intbig_contains(ArrayType *a, ArrayType *b);
    static bool _intbig_overlap(ArrayType *a, ArrayType *b);
    static ArrayType *_intbig_union(ArrayType *a, ArrayType *b);
    
    static ArrayType *_intbig_inter(ArrayType *a, ArrayType *b);
    static void rt__intbig_size(ArrayType *a, float *sz);
    
    
    
    /*****************************************************************************
     *			Boolean Search
     *****************************************************************************/
    
    #define BooleanSearchStrategy	20
    
    /*
     * item in polish notation with back link
     * to left operand
     */
    typedef struct ITEM
    {
    	int2		type;
    	int2		left;
    	int4		val;
    }	ITEM;
    
    typedef struct
    {
    	int4		len;
    	int4		size;
    	char		data[1];
    }	QUERYTYPE;
    
    #define HDRSIZEQT	( 2*sizeof(int4) )
    #define COMPUTESIZE(size)	( HDRSIZEQT + size * sizeof(ITEM) )
    #define GETQUERY(x)  (ITEM*)( (char*)(x)+HDRSIZEQT )
    
    PG_FUNCTION_INFO_V1(bqarr_in);
    PG_FUNCTION_INFO_V1(bqarr_out);
    Datum		bqarr_in(PG_FUNCTION_ARGS);
    Datum		bqarr_out(PG_FUNCTION_ARGS);
    
    PG_FUNCTION_INFO_V1(boolop);
    Datum		boolop(PG_FUNCTION_ARGS);
    
    PG_FUNCTION_INFO_V1(rboolop);
    Datum		rboolop(PG_FUNCTION_ARGS);
    
    PG_FUNCTION_INFO_V1(querytree);
    Datum		querytree(PG_FUNCTION_ARGS);
    
    static bool signconsistent(QUERYTYPE * query, BITVEC sign, bool leaf);
    static bool execconsistent(QUERYTYPE * query, ArrayType *array, bool leaf);
    
    /*****************************************************************************
     *						   GiST functions
     *****************************************************************************/
    
    /*
    ** The GiST Consistent method for _intments
    ** Should return false if for all data items x below entry,
    ** the predicate x op query == FALSE, where op is the oper
    ** corresponding to strategy in the pg_amop table.
    */
    Datum
    g_int_consistent(PG_FUNCTION_ARGS)
    {
    	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    	ArrayType  *query = (ArrayType *) PG_GETARG_POINTER(1);
    	StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
    	bool		retval;
    
    	if (strategy == BooleanSearchStrategy)
    		PG_RETURN_BOOL(execconsistent((QUERYTYPE *) query,
    							   (ArrayType *) DatumGetPointer(entry->key),
    				  ISLEAFKEY((ArrayType *) DatumGetPointer(entry->key))));
    
    	/* XXX are we sure it's safe to scribble on the query object here? */
    	/* XXX what about toasted input? */
    	/* sort query for fast search, key is already sorted */
    	if (ARRISVOID(query))
    		PG_RETURN_BOOL(false);
    	PREPAREARR(query);
    
    	switch (strategy)
    	{
    		case RTOverlapStrategyNumber:
    			retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
    									   query);
    			break;
    		case RTSameStrategyNumber:
    			if (GIST_LEAF(entry))
    				DirectFunctionCall3(
    									g_int_same,
    									entry->key,
    									PointerGetDatum(query),
    									PointerGetDatum(&retval)
    					);
    			else
    				retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
    											query);
    			break;
    		case RTContainsStrategyNumber:
    			retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
    										query);
    			break;
    		case RTContainedByStrategyNumber:
    			if (GIST_LEAF(entry))
    				retval = inner_int_contains(query,
    							  (ArrayType *) DatumGetPointer(entry->key));
    			else
    				retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
    										   query);
    			break;
    		default:
    			retval = FALSE;
    	}
    	PG_RETURN_BOOL(retval);
    }
    
    Datum
    g_int_union(PG_FUNCTION_ARGS)
    {
    	PG_RETURN_POINTER(_int_common_union(
    										(bytea *) PG_GETARG_POINTER(0),
    										(int *) PG_GETARG_POINTER(1),
    										inner_int_union
    										));
    }
    
    /*
    ** GiST Compress and Decompress methods
    */
    Datum
    g_int_compress(PG_FUNCTION_ARGS)
    {
    	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    	GISTENTRY  *retval;
    	ArrayType  *r;
    	int			len;
    	int		   *dr;
    	int			i,
    				min,
    				cand;
    
    	if (entry->leafkey)
    	{
    		r = (ArrayType *) PG_DETOAST_DATUM_COPY(entry->key);
    		PREPAREARR(r);
    		r->flags |= LEAFKEY;
    		retval = palloc(sizeof(GISTENTRY));
    		gistentryinit(*retval, PointerGetDatum(r),
    			  entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
    
    		PG_RETURN_POINTER(retval);
    	}
    
    	r = (ArrayType *) PG_DETOAST_DATUM(entry->key);
    	if (ISLEAFKEY(r) || ARRISVOID(r))
    	{
    		if (r != (ArrayType *) DatumGetPointer(entry->key))
    			pfree(r);
    		PG_RETURN_POINTER(entry);
    	}
    
    	if ((len = ARRNELEMS(r)) >= 2 * MAXNUMRANGE)
    	{							/* compress */
    		if (r == (ArrayType *) DatumGetPointer(entry->key))
    			r = (ArrayType *) PG_DETOAST_DATUM_COPY(entry->key);
    		r = resize_intArrayType(r, 2 * (len));
    
    		dr = ARRPTR(r);
    
    		for (i = len - 1; i >= 0; i--)
    			dr[2 * i] = dr[2 * i + 1] = dr[i];
    
    		len *= 2;
    		cand = 1;
    		while (len > MAXNUMRANGE * 2)
    		{
    			min = 0x7fffffff;
    			for (i = 2; i < len; i += 2)
    				if (min > (dr[i] - dr[i - 1]))
    				{
    					min = (dr[i] - dr[i - 1]);
    					cand = i;
    				}
    			memmove((void *) &dr[cand - 1], (void *) &dr[cand + 1], (len - cand - 1) * sizeof(int));
    			len -= 2;
    		}
    		r = resize_intArrayType(r, len);
    		retval = palloc(sizeof(GISTENTRY));
    		gistentryinit(*retval, PointerGetDatum(r),
    			  entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
    		PG_RETURN_POINTER(retval);
    	}
    	else
    		PG_RETURN_POINTER(entry);
    
    	PG_RETURN_POINTER(entry);
    }
    
    Datum
    g_int_decompress(PG_FUNCTION_ARGS)
    {
    	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    	GISTENTRY  *retval;
    	ArrayType  *r;
    	int		   *dr,
    				lenr;
    	ArrayType  *in;
    	int			lenin;
    	int		   *din;
    	int			i,
    				j;
    
    	in = (ArrayType *) PG_DETOAST_DATUM(entry->key);
    
    	if (ARRISVOID(in))
    		PG_RETURN_POINTER(entry);
    
    	lenin = ARRNELEMS(in);
    
    	if (lenin < 2 * MAXNUMRANGE || ISLEAFKEY(in))
    	{							/* not comressed value */
    		if (in != (ArrayType *) DatumGetPointer(entry->key))
    		{
    			retval = palloc(sizeof(GISTENTRY));
    			gistentryinit(*retval, PointerGetDatum(in),
    			 entry->rel, entry->page, entry->offset, VARSIZE(in), FALSE);
    
    			PG_RETURN_POINTER(retval);
    		}
    		PG_RETURN_POINTER(entry);
    	}
    
    	din = ARRPTR(in);
    	lenr = internal_size(din, lenin);
    
    	r = new_intArrayType(lenr);
    	dr = ARRPTR(r);
    
    	for (i = 0; i < lenin; i += 2)
    		for (j = din[i]; j <= din[i + 1]; j++)
    			if ((!i) || *(dr - 1) != j)
    				*dr++ = j;
    
    	if (in != (ArrayType *) DatumGetPointer(entry->key))
    		pfree(in);
    	retval = palloc(sizeof(GISTENTRY));
    	gistentryinit(*retval, PointerGetDatum(r),
    			  entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
    
    	PG_RETURN_POINTER(retval);
    }
    
    /*
    ** The GiST Penalty method for _intments
    */
    Datum
    g_int_penalty(PG_FUNCTION_ARGS)
    {
    	PG_RETURN_POINTER(_int_common_penalty(
    									  (GISTENTRY *) PG_GETARG_POINTER(0),
    									  (GISTENTRY *) PG_GETARG_POINTER(1),
    										  (float *) PG_GETARG_POINTER(2),
    										  inner_int_union, rt__int_size
    										  ));
    }
    
    
    Datum
    g_int_picksplit(PG_FUNCTION_ARGS)
    {
    	PG_RETURN_POINTER(_int_common_picksplit(
    										  (bytea *) PG_GETARG_POINTER(0),
    								  (GIST_SPLITVEC *) PG_GETARG_POINTER(1),
    											inner_int_union,
    											inner_int_inter,
    											rt__int_size,
    											0.01
    											));
    }
    
    /*
    ** Equality methods
    */
    
    
    Datum
    g_int_same(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) PointerGetDatum(PG_GETARG_POINTER(0));
    	ArrayType  *b = (ArrayType *) PointerGetDatum(PG_GETARG_POINTER(1));
    	bool	   *result = (bool *) PG_GETARG_POINTER(2);
    	int4		n = ARRNELEMS(a);
    	int4	   *da,
    			   *db;
    
    	if (n != ARRNELEMS(b))
    	{
    		*result = false;
    		PG_RETURN_POINTER(result);
    	}
    	*result = TRUE;
    	da = ARRPTR(a);
    	db = ARRPTR(b);
    	while (n--)
    		if (*da++ != *db++)
    		{
    			*result = FALSE;
    			break;
    		}
    
    	PG_RETURN_POINTER(result);
    }
    
    Datum
    _int_contained(PG_FUNCTION_ARGS)
    {
    	PG_RETURN_BOOL(DatumGetBool(
    								DirectFunctionCall2(
    													_int_contains,
    								   PointerGetDatum(PG_GETARG_POINTER(1)),
    									PointerGetDatum(PG_GETARG_POINTER(0))
    													)
    								));
    }
    
    Datum
    _int_contains(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    	ArrayType  *b = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
    	bool		res;
    
    	if (ARRISVOID(a) || ARRISVOID(b))
    		return FALSE;
    
    	PREPAREARR(a);
    	PREPAREARR(b);
    	res = inner_int_contains(a, b);
    	pfree(a);
    	pfree(b);
    	PG_RETURN_BOOL(res);
    }
    
    static bool
    inner_int_contains(ArrayType *a, ArrayType *b)
    {
    	int			na,
    				nb;
    	int			i,
    				j,
    				n;
    	int		   *da,
    			   *db;
    
    	if (ARRISVOID(a) || ARRISVOID(b))
    		return FALSE;
    
    	na = ARRNELEMS(a);
    	nb = ARRNELEMS(b);
    	da = ARRPTR(a);
    	db = ARRPTR(b);
    
    #ifdef GIST_DEBUG
    	elog(DEBUG3, "contains %d %d", na, nb);
    #endif
    
    	i = j = n = 0;
    	while (i < na && j < nb)
    		if (da[i] < db[j])
    			i++;
    		else if (da[i] == db[j])
    		{
    			n++;
    			i++;
    			j++;
    		}
    		else
    			j++;
    
    	return (n == nb) ? TRUE : FALSE;
    }
    
    /*****************************************************************************
     * Operator class for R-tree indexing
     *****************************************************************************/
    
    Datum
    _int_different(PG_FUNCTION_ARGS)
    {
    	PG_RETURN_BOOL(!DatumGetBool(
    								 DirectFunctionCall2(
    													 _int_same,
    								   PointerGetDatum(PG_GETARG_POINTER(0)),
    									PointerGetDatum(PG_GETARG_POINTER(1))
    													 )
    								 ));
    }
    
    Datum
    _int_same(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    	ArrayType  *b = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
    	int			na,
    				nb;
    	int			n;
    	int		   *da,
    			   *db;
    	bool		result;
    	bool		avoid = ARRISVOID(a);
    	bool		bvoid = ARRISVOID(b);
    
    	if (avoid || bvoid)
    		return (avoid && bvoid) ? TRUE : FALSE;
    
    	SORT(a);
    	SORT(b);
    	na = ARRNELEMS(a);
    	nb = ARRNELEMS(b);
    	da = ARRPTR(a);
    	db = ARRPTR(b);
    
    	result = FALSE;
    
    	if (na == nb)
    	{
    		result = TRUE;
    		for (n = 0; n < na; n++)
    			if (da[n] != db[n])
    			{
    				result = FALSE;
    				break;
    			}
    	}
    
    	pfree(a);
    	pfree(b);
    
    	PG_RETURN_BOOL(result);
    }
    
    /*	_int_overlap -- does a overlap b?
     */
    Datum
    _int_overlap(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    	ArrayType  *b = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
    	bool		result;
    
    	if (ARRISVOID(a) || ARRISVOID(b))
    		return FALSE;
    
    	SORT(a);
    	SORT(b);
    
    	result = inner_int_overlap(a, b);
    
    	pfree(a);
    	pfree(b);
    
    	PG_RETURN_BOOL(result);
    }
    
    static bool
    inner_int_overlap(ArrayType *a, ArrayType *b)
    {
    	int			na,
    				nb;
    	int			i,
    				j;
    	int		   *da,
    			   *db;
    
    	if (ARRISVOID(a) || ARRISVOID(b))
    		return FALSE;
    
    	na = ARRNELEMS(a);
    	nb = ARRNELEMS(b);
    	da = ARRPTR(a);
    	db = ARRPTR(b);
    
    #ifdef GIST_DEBUG
    	elog(DEBUG3, "g_int_overlap");
    #endif
    
    	i = j = 0;
    	while (i < na && j < nb)
    		if (da[i] < db[j])
    			i++;
    		else if (da[i] == db[j])
    			return TRUE;
    		else
    			j++;
    
    	return FALSE;
    }
    
    Datum
    _int_union(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    	ArrayType  *b = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
    	ArrayType  *result;
    
    	if (!ARRISVOID(a))
    		SORT(a);
    	if (!ARRISVOID(b))
    		SORT(b);
    
    	result = inner_int_union(a, b);
    
    	if (a)
    		pfree(a);
    	if (b)
    		pfree(b);
    
    	PG_RETURN_POINTER(result);
    }
    
    static ArrayType *
    inner_int_union(ArrayType *a, ArrayType *b)
    {
    	ArrayType  *r = NULL;
    	int			na,
    				nb;
    	int		   *da,
    			   *db,
    			   *dr;
    	int			i,
    				j;
    
    	if (ARRISVOID(a) && ARRISVOID(b))
    		return new_intArrayType(0);
    	if (ARRISVOID(a))
    		r = copy_intArrayType(b);
    	if (ARRISVOID(b))
    		r = copy_intArrayType(a);
    
    	if (r)
    		dr = ARRPTR(r);
    	else
    	{
    		na = ARRNELEMS(a);
    		nb = ARRNELEMS(b);
    		da = ARRPTR(a);
    		db = ARRPTR(b);
    
    		r = new_intArrayType(na + nb);
    		dr = ARRPTR(r);
    
    		/* union */
    		i = j = 0;
    		while (i < na && j < nb)
    			if (da[i] < db[j])
    				*dr++ = da[i++];
    			else
    				*dr++ = db[j++];
    
    		while (i < na)
    			*dr++ = da[i++];
    		while (j < nb)
    			*dr++ = db[j++];
    
    	}
    
    	if (ARRNELEMS(r) > 1)
    		r = _int_unique(r);
    
    	return r;
    }
    
    
    Datum
    _int_inter(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    	ArrayType  *b = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
    	ArrayType  *result;
    
    	if (ARRISVOID(a) || ARRISVOID(b))
    		PG_RETURN_POINTER(new_intArrayType(0));
    
    	SORT(a);
    	SORT(b);
    
    	result = inner_int_inter(a, b);
    
    	pfree(a);
    	pfree(b);
    
    	PG_RETURN_POINTER(result);
    }
    
    static ArrayType *
    inner_int_inter(ArrayType *a, ArrayType *b)
    {
    	ArrayType  *r;
    	int			na,
    				nb;
    	int		   *da,
    			   *db,
    			   *dr;
    	int			i,
    				j;
    
    	if (ARRISVOID(a) || ARRISVOID(b))
    		return new_intArrayType(0);
    
    	na = ARRNELEMS(a);
    	nb = ARRNELEMS(b);
    	da = ARRPTR(a);
    	db = ARRPTR(b);
    	r = new_intArrayType(min(na, nb));
    	dr = ARRPTR(r);
    
    	i = j = 0;
    	while (i < na && j < nb)
    		if (da[i] < db[j])
    			i++;
    		else if (da[i] == db[j])
    		{
    			if (i + j == 0 || (i + j > 0 && *(dr - 1) != db[j]))
    				*dr++ = db[j];
    			i++;
    			j++;
    		}
    		else
    			j++;
    
    	if ((dr - ARRPTR(r)) == 0)
    	{
    		pfree(r);
    		return new_intArrayType(0);
    	}
    	else
    		return resize_intArrayType(r, dr - ARRPTR(r));
    }
    
    static void
    rt__int_size(ArrayType *a, float *size)
    {
    	*size = (float) ARRNELEMS(a);
    
    	return;
    }
    
    
    /*****************************************************************************
     *				   Miscellaneous operators and functions
     *****************************************************************************/
    
    /* len >= 2 */
    static bool
    isort(int4 *a, int len)
    {
    	int4		tmp,
    				index;
    	int4	   *cur,
    			   *end;
    	bool		r = FALSE;
    
    	end = a + len;
    	do
    	{
    		index = 0;
    		cur = a + 1;
    		while (cur < end)
    		{
    			if (*(cur - 1) > *cur)
    			{
    				tmp = *(cur - 1);
    				*(cur - 1) = *cur;
    				*cur = tmp;
    				index = 1;
    			}
    			else if (!r && *(cur - 1) == *cur)
    				r = TRUE;
    			cur++;
    		}
    	} while (index);
    	return r;
    }
    
    static ArrayType *
    new_intArrayType(int num)
    {
    	ArrayType  *r;
    	int			nbytes = ARR_OVERHEAD(NDIM) + sizeof(int) * num;
    
    	r = (ArrayType *) palloc(nbytes);
    
    	MemSet(r, 0, nbytes);
    	
    	ARR_SIZE(r) = nbytes;
    	ARR_NDIM(r) = NDIM;
    	ARR_ELEMTYPE(r) = INT4OID;
    	r->flags &= ~LEAFKEY;
    	*((int *) ARR_DIMS(r)) = num;
    	*((int *) ARR_LBOUND(r)) = 1;
    	ARR_ELEMTYPE(r) = INT4OID;
    
    	return r;
    }
    
    static ArrayType *
    resize_intArrayType(ArrayType *a, int num)
    {
    	int			nbytes = ARR_OVERHEAD(NDIM) + sizeof(int) * num;
    
    	if (num == ARRNELEMS(a))
    		return a;
    
    	a = (ArrayType *) repalloc(a, nbytes);
    
    	a->size = nbytes;
    	*((int *) ARR_DIMS(a)) = num;
    	return a;
    }
    
    static ArrayType *
    copy_intArrayType(ArrayType *a)
    {
    	ArrayType  *r;
    
    	r = new_intArrayType(ARRNELEMS(a));
    	memmove(r, a, VARSIZE(a));
    	return r;
    }
    
    /* num for compressed key */
    static int
    internal_size(int *a, int len)
    {
    	int			i,
    				size = 0;
    
    	for (i = 0; i < len; i += 2)
    		if (!i || a[i] != a[i - 1])		/* do not count repeated range */
    			size += a[i + 1] - a[i] + 1;
    
    	return size;
    }
    
    /* r is sorted and size of r > 1 */
    static ArrayType *
    _int_unique(ArrayType *r)
    {
    	int		   *tmp,
    			   *dr,
    			   *data;
    	int			num = ARRNELEMS(r);
    
    	data = tmp = dr = ARRPTR(r);
    	while (tmp - data < num)
    		if (*tmp != *dr)
    			*(++dr) = *tmp++;
    		else
    			tmp++;
    	return resize_intArrayType(r, dr + 1 - ARRPTR(r));
    }
    
    /*********************************************************************
    ** intbig functions
    *********************************************************************/
    static void
    gensign(BITVEC sign, int *a, int len)
    {
    	int			i;
    
    	/* we assume that the sign vector is previously zeroed */
    	for (i = 0; i < len; i++)
    	{
    		HASH(sign, *a);
    		a++;
    	}
    }
    
    static bool
    _intbig_overlap(ArrayType *a, ArrayType *b)
    {
    	int			i;
    	BITVECP		da,
    				db;
    
    	da = SIGPTR(a);
    	db = SIGPTR(b);
    
    	LOOPBYTE(if (da[i] & db[i]) return TRUE);
    	return FALSE;
    }
    
    static bool
    _intbig_contains(ArrayType *a, ArrayType *b)
    {
    	int			i;
    	BITVECP		da,
    				db;
    
    	da = SIGPTR(a);
    	db = SIGPTR(b);
    
    	LOOPBYTE(if (db[i] & ~da[i]) return FALSE);
    
    	return TRUE;
    }
    
    static void
    rt__intbig_size(ArrayType *a, float *sz)
    {
    	int			i,
    				len = 0;
    	BITVECP		bv = SIGPTR(a);
    
    	LOOPBYTE(
    			 len +=
    			 GETBITBYTE(bv, 0) +
    			 GETBITBYTE(bv, 1) +
    			 GETBITBYTE(bv, 2) +
    			 GETBITBYTE(bv, 3) +
    			 GETBITBYTE(bv, 4) +
    			 GETBITBYTE(bv, 5) +
    			 GETBITBYTE(bv, 6) +
    			 GETBITBYTE(bv, 7);
    	bv = (BITVECP) (((char *) bv) + 1);
    	);
    
    	*sz = (float) len;
    	return;
    }
    
    static ArrayType *
    _intbig_union(ArrayType *a, ArrayType *b)
    {
    	ArrayType  *r;
    	BITVECP		da,
    				db,
    				dr;
    	int			i;
    
    	r = new_intArrayType(SIGLENINT);
    
    	da = SIGPTR(a);
    	db = SIGPTR(b);
    	dr = SIGPTR(r);
    
    	LOOPBYTE(dr[i] = da[i] | db[i]);
    
    	return r;
    }
    
    static ArrayType *
    _intbig_inter(ArrayType *a, ArrayType *b)
    {
    	ArrayType  *r;
    	BITVECP		da,
    				db,
    				dr;
    	int			i;
    
    	r = new_intArrayType(SIGLENINT);
    
    	da = SIGPTR(a);
    	db = SIGPTR(b);
    	dr = SIGPTR(r);
    
    	LOOPBYTE(dr[i] = da[i] & db[i]);
    
    	return r;
    }
    
    Datum
    g_intbig_same(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) PG_GETARG_POINTER(0);
    	ArrayType  *b = (ArrayType *) PG_GETARG_POINTER(1);
    	bool	   *result = (bool *) PG_GETARG_POINTER(2);
    	BITVECP		da,
    				db;
    	int			i;
    
    	da = SIGPTR(a);
    	db = SIGPTR(b);
    
    	LOOPBYTE(
    			 if (da[i] != db[i])
    			 {
    		*result = FALSE;
    		PG_RETURN_POINTER(result);
    	}
    	);
    
    	*result = TRUE;
    	PG_RETURN_POINTER(result);
    }
    
    Datum
    g_intbig_compress(PG_FUNCTION_ARGS)
    {
    	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    	GISTENTRY  *retval;
    	ArrayType  *r,
    			   *in;
    	bool		maycompress = true;
    	int			i;
    
    	if (DatumGetPointer(entry->key) != NULL)
    		in = (ArrayType *) PG_DETOAST_DATUM(entry->key);
    	else
    		in = NULL;
    
    	if (!entry->leafkey)
    	{
    		LOOPBYTE(
    				 if ((((char *) ARRPTR(in))[i] & 0xff) != 0xff)
    				 {
    			maycompress = false;
    			break;
    		}
    		);
    		if (maycompress)
    		{
    			retval = palloc(sizeof(GISTENTRY));
    			r = new_intArrayType(1);
    			gistentryinit(*retval, PointerGetDatum(r),
    			  entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
    			PG_RETURN_POINTER(retval);
    		}
    		PG_RETURN_POINTER(entry);
    	}
    
    	retval = palloc(sizeof(GISTENTRY));
    	r = new_intArrayType(SIGLENINT);
    
    	if (ARRISVOID(in))
    	{
    		gistentryinit(*retval, PointerGetDatum(r),
    			  entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
    		if (in != (ArrayType *) DatumGetPointer(entry->key))
    			pfree(in);
    		PG_RETURN_POINTER(retval);
    	}
    
    	gensign(SIGPTR(r),
    			ARRPTR(in),
    			ARRNELEMS(in));
    
    	LOOPBYTE(
    			 if ((((char *) ARRPTR(in))[i] & 0xff) != 0xff)
    			 {
    		maycompress = false;
    		break;
    	}
    	);
    
    	if (maycompress)
    	{
    		pfree(r);
    		r = new_intArrayType(1);
    	}
    
    	gistentryinit(*retval, PointerGetDatum(r), entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
    
    	if (in != (ArrayType *) DatumGetPointer(entry->key))
    		pfree(in);
    
    	PG_RETURN_POINTER(retval);
    }
    
    Datum
    g_intbig_decompress(PG_FUNCTION_ARGS)
    {
    	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    	ArrayType  *key;
    
    	key = (ArrayType *) PG_DETOAST_DATUM(entry->key);
    
    	if (key != (ArrayType *) DatumGetPointer(entry->key))
    	{
    		GISTENTRY  *retval;
    
    		retval = palloc(sizeof(GISTENTRY));
    
    		gistentryinit(*retval, PointerGetDatum(key),
    					  entry->rel, entry->page, entry->offset, (key) ? VARSIZE(key) : 0, FALSE);
    		PG_RETURN_POINTER(retval);
    	}
    	if (ARRNELEMS(key) == 1)
    	{
    		GISTENTRY  *retval;
    		ArrayType  *newkey;
    
    		retval = palloc(sizeof(GISTENTRY));
    		newkey = new_intArrayType(SIGLENINT);
    		MemSet((void *) ARRPTR(newkey), 0xff, SIGLEN);
    
    		gistentryinit(*retval, PointerGetDatum(newkey),
    		 entry->rel, entry->page, entry->offset, VARSIZE(newkey), FALSE);
    		PG_RETURN_POINTER(retval);
    	}
    	PG_RETURN_POINTER(entry);
    }
    
    Datum
    g_intbig_picksplit(PG_FUNCTION_ARGS)
    {
    	PG_RETURN_POINTER(_int_common_picksplit(
    										  (bytea *) PG_GETARG_POINTER(0),
    								  (GIST_SPLITVEC *) PG_GETARG_POINTER(1),
    											_intbig_union,
    											_intbig_inter,
    											rt__intbig_size,
    											0.1
    											));
    }
    
    Datum
    g_intbig_union(PG_FUNCTION_ARGS)
    {
    	PG_RETURN_POINTER(_int_common_union(
    										(bytea *) PG_GETARG_POINTER(0),
    										(int *) PG_GETARG_POINTER(1),
    										_intbig_union
    										));
    }
    
    Datum
    g_intbig_penalty(PG_FUNCTION_ARGS)
    {
    	PG_RETURN_POINTER(_int_common_penalty(
    									  (GISTENTRY *) PG_GETARG_POINTER(0),
    									  (GISTENTRY *) PG_GETARG_POINTER(1),
    										  (float *) PG_GETARG_POINTER(2),
    										  _intbig_union, rt__intbig_size
    										  ));
    }
    
    Datum
    g_intbig_consistent(PG_FUNCTION_ARGS)
    {
    	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    	ArrayType  *query = (ArrayType *) PG_GETARG_POINTER(1);
    	StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
    	bool		retval;
    	ArrayType  *q;
    
    	if (strategy == BooleanSearchStrategy)
    		PG_RETURN_BOOL(signconsistent((QUERYTYPE *) query,
    					   SIGPTR((ArrayType *) DatumGetPointer(entry->key)),
    									  false));
    
    	/* XXX what about toasted input? */
    	if (ARRISVOID(query))
    		return FALSE;
    
    	q = new_intArrayType(SIGLENINT);
    	gensign(SIGPTR(q),
    			ARRPTR(query),
    			ARRNELEMS(query));
    
    	switch (strategy)
    	{
    		case RTOverlapStrategyNumber:
    			retval = _intbig_overlap((ArrayType *) DatumGetPointer(entry->key), q);
    			break;
    		case RTSameStrategyNumber:
    			if (GIST_LEAF(entry))
    				DirectFunctionCall3(
    									g_intbig_same,
    									entry->key,
    									PointerGetDatum(q),
    									PointerGetDatum(&retval)
    					);
    			else
    				retval = _intbig_contains((ArrayType *) DatumGetPointer(entry->key), q);
    			break;
    		case RTContainsStrategyNumber:
    			retval = _intbig_contains((ArrayType *) DatumGetPointer(entry->key), q);
    			break;
    		case RTContainedByStrategyNumber:
    			retval = _intbig_overlap((ArrayType *) DatumGetPointer(entry->key), q);
    			break;
    		default:
    			retval = FALSE;
    	}
    	pfree(q);
    	PG_RETURN_BOOL(retval);
    }
    
    /*****************************************************************
    ** Common GiST Method
    *****************************************************************/
    
    /*
    ** The GiST Union method for _intments
    ** returns the minimal set that encloses all the entries in entryvec
    */
    static ArrayType *
    _int_common_union(bytea *entryvec, int *sizep, formarray unionf)
    {
    	int			numranges,
    				i;
    	ArrayType  *out = (ArrayType *) NULL;
    	ArrayType  *tmp;
    
    #ifdef GIST_DEBUG
    	elog(DEBUG3, "_int_common_union in");
    #endif
    
    	numranges = (VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY);
    	tmp = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[0].key);
    
    	for (i = 1; i < numranges; i++)
    	{
    		out = (*unionf) (tmp, (ArrayType *)
    			  DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key));
    		if (i > 1 && tmp)
    			pfree(tmp);
    		tmp = out;
    	}
    
    	out->flags &= ~LEAFKEY;
    	*sizep = VARSIZE(out);
    	if (*sizep == 0)
    	{
    		pfree(out);
    #ifdef GIST_DEBUG
    		elog(DEBUG3, "_int_common_union out1");
    #endif
    		return NULL;
    	}
    #ifdef GIST_DEBUG
    	elog(DEBUG3, "_int_common_union out");
    #endif
    	return (out);
    
    }
    
    /*****************************************
     * The GiST Penalty method for _intments *
     *****************************************/
    
    static float *
    _int_common_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result,
    					formarray unionf,
    					formfloat sizef)
    {
    	ArrayType  *ud;
    	float		tmp1,
    				tmp2;
    
    #ifdef GIST_DEBUG
    	elog(DEBUG3, "penalty");
    #endif
    	ud = (*unionf) ((ArrayType *) DatumGetPointer(origentry->key),
    					(ArrayType *) DatumGetPointer(newentry->key));
    	(*sizef) (ud, &tmp1);
    	(*sizef) ((ArrayType *) DatumGetPointer(origentry->key), &tmp2);
    	*result = tmp1 - tmp2;
    	pfree(ud);
    
    #ifdef GIST_DEBUG
    	elog(DEBUG3, "--penalty\t%g", *result);
    #endif
    
    	return (result);
    }
    
    typedef struct
    {
    	OffsetNumber pos;
    	float		cost;
    } SPLITCOST;
    
    static int
    comparecost(const void *a, const void *b)
    {
    	if (((SPLITCOST *) a)->cost == ((SPLITCOST *) b)->cost)
    		return 0;
    	else
    		return (((SPLITCOST *) a)->cost > ((SPLITCOST *) b)->cost) ? 1 : -1;
    }
    
    /*
    ** The GiST PickSplit method for _intments
    ** We use Guttman's poly time split algorithm
    */
    static GIST_SPLITVEC *
    _int_common_picksplit(bytea *entryvec,
    					  GIST_SPLITVEC *v,
    					  formarray unionf,
    					  formarray interf,
    					  formfloat sizef,
    					  float coef)
    {
    	OffsetNumber i,
    				j;
    	ArrayType  *datum_alpha,
    			   *datum_beta;
    	ArrayType  *datum_l,
    			   *datum_r;
    	ArrayType  *union_d,
    			   *union_dl,
    			   *union_dr;
    	ArrayType  *inter_d;
    	bool		firsttime;
    	float		size_alpha,
    				size_beta,
    				size_union,
    				size_inter;
    	float		size_waste,
    				waste;
    	float		size_l,
    				size_r;
    	int			nbytes;
    	OffsetNumber seed_1 = 0,
    				seed_2 = 0;
    	OffsetNumber *left,
    			   *right;
    	OffsetNumber maxoff;
    	SPLITCOST  *costvector;
    
    #ifdef GIST_DEBUG
    	elog(DEBUG3, "--------picksplit %d", (VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY));
    #endif
    
    	maxoff = ((VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY)) - 2;
    	nbytes = (maxoff + 2) * sizeof(OffsetNumber);
    	v->spl_left = (OffsetNumber *) palloc(nbytes);
    	v->spl_right = (OffsetNumber *) palloc(nbytes);
    
    	firsttime = true;
    	waste = 0.0;
    	for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
    	{
    		datum_alpha = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key);
    		for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
    		{
    			datum_beta = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[j].key);
    
    			/* compute the wasted space by unioning these guys */
    			/* size_waste = size_union - size_inter; */
    			union_d = (*unionf) (datum_alpha, datum_beta);
    			(*sizef) (union_d, &size_union);
    			inter_d = (*interf) (datum_alpha, datum_beta);
    			(*sizef) (inter_d, &size_inter);
    			size_waste = size_union - size_inter;
    
    			pfree(union_d);
    
    			if (inter_d != (ArrayType *) NULL)
    				pfree(inter_d);
    
    			/*
    			 * are these a more promising split that what we've already
    			 * seen?
    			 */
    
    			if (size_waste > waste || firsttime)
    			{
    				waste = size_waste;
    				seed_1 = i;
    				seed_2 = j;
    				firsttime = false;
    			}
    		}
    	}
    
    	left = v->spl_left;
    	v->spl_nleft = 0;
    	right = v->spl_right;
    	v->spl_nright = 0;
    	if (seed_1 == 0 || seed_2 == 0)
    	{
    		seed_1 = 1;
    		seed_2 = 2;
    	}
    
    	datum_alpha = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[seed_1].key);
    	datum_l = copy_intArrayType(datum_alpha);
    	(*sizef) (datum_l, &size_l);
    	datum_beta = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[seed_2].key);
    	datum_r = copy_intArrayType(datum_beta);
    	(*sizef) (datum_r, &size_r);
    
    	maxoff = OffsetNumberNext(maxoff);
    
    	/*
    	 * sort entries
    	 */
    	costvector = (SPLITCOST *) palloc(sizeof(SPLITCOST) * maxoff);
    	for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
    	{
    		costvector[i - 1].pos = i;
    		datum_alpha = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key);
    		union_d = (*unionf) (datum_l, datum_alpha);
    		(*sizef) (union_d, &size_alpha);
    		pfree(union_d);
    		union_d = (*unionf) (datum_r, datum_alpha);
    		(*sizef) (union_d, &size_beta);
    		pfree(union_d);
    		costvector[i - 1].cost = abs((size_alpha - size_l) - (size_beta - size_r));
    	}
    	qsort((void *) costvector, maxoff, sizeof(SPLITCOST), comparecost);
    
    	/*
    	 * Now split up the regions between the two seeds.	An important
    	 * property of this split algorithm is that the split vector v has the
    	 * indices of items to be split in order in its left and right
    	 * vectors.  We exploit this property by doing a merge in the code
    	 * that actually splits the page.
    	 *
    	 * For efficiency, we also place the new index tuple in this loop. This
    	 * is handled at the very end, when we have placed all the existing
    	 * tuples and i == maxoff + 1.
    	 */
    
    
    	for (j = 0; j < maxoff; j++)
    	{
    		i = costvector[j].pos;
    
    		/*
    		 * If we've already decided where to place this item, just put it
    		 * on the right list.  Otherwise, we need to figure out which page
    		 * needs the least enlargement in order to store the item.
    		 */
    
    		if (i == seed_1)
    		{
    			*left++ = i;
    			v->spl_nleft++;
    			continue;
    		}
    		else if (i == seed_2)
    		{
    			*right++ = i;
    			v->spl_nright++;
    			continue;
    		}
    
    		/* okay, which page needs least enlargement? */
    		datum_alpha = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key);
    		union_dl = (*unionf) (datum_l, datum_alpha);
    		union_dr = (*unionf) (datum_r, datum_alpha);
    		(*sizef) (union_dl, &size_alpha);
    		(*sizef) (union_dr, &size_beta);
    
    		/* pick which page to add it to */
    		if (size_alpha - size_l < size_beta - size_r + WISH_F(v->spl_nleft, v->spl_nright, coef))
    		{
    			if (datum_l)
    				pfree(datum_l);
    			if (union_dr)
    				pfree(union_dr);
    			datum_l = union_dl;
    			size_l = size_alpha;
    			*left++ = i;
    			v->spl_nleft++;
    		}
    		else
    		{
    			if (datum_r)
    				pfree(datum_r);
    			if (union_dl)
    				pfree(union_dl);
    			datum_r = union_dr;
    			size_r = size_beta;
    			*right++ = i;
    			v->spl_nright++;
    		}
    	}
    	pfree(costvector);
    	*right = *left = FirstOffsetNumber;
    
    	datum_l->flags &= ~LEAFKEY;
    	datum_r->flags &= ~LEAFKEY;
    	v->spl_ldatum = PointerGetDatum(datum_l);
    	v->spl_rdatum = PointerGetDatum(datum_r);
    
    #ifdef GIST_DEBUG
    	elog(DEBUG3, "--------ENDpicksplit %d %d", v->spl_nleft, v->spl_nright);
    #endif
    	return v;
    }
    
    /*****************************************************************************
     *		BoolSearch
     *****************************************************************************/
    
    
    #define END		0
    #define ERR		1
    #define VAL		2
    #define OPR		3
    #define OPEN	4
    #define CLOSE	5
    
    /* parser's states */
    #define WAITOPERAND 1
    #define WAITENDOPERAND	2
    #define WAITOPERATOR	3
    
    /*
     * node of query tree, also used
     * for storing polish notation in parser
     */
    typedef struct NODE
    {
    	int4		type;
    	int4		val;
    	struct NODE *next;
    }	NODE;
    
    typedef struct
    {
    	char	   *buf;
    	int4		state;
    	int4		count;
    	/* reverse polish notation in list (for temprorary usage) */
    	NODE	   *str;
    	/* number in str */
    	int4		num;
    }	WORKSTATE;
    
    /*
     * get token from query string
     */
    static int4
    gettoken(WORKSTATE * state, int4 *val)
    {
    	char		nnn[16],
    			   *curnnn;
    
    	curnnn = nnn;
    	while (1)
    	{
    		switch (state->state)
    		{
    			case WAITOPERAND:
    				curnnn = nnn;
    				if ((*(state->buf) >= '0' && *(state->buf) <= '9') ||
    					*(state->buf) == '-')
    				{
    					state->state = WAITENDOPERAND;
    					*curnnn = *(state->buf);
    					curnnn++;
    				}
    				else if (*(state->buf) == '!')
    				{
    					(state->buf)++;
    					*val = (int4) '!';
    					return OPR;
    				}
    				else if (*(state->buf) == '(')
    				{
    					state->count++;
    					(state->buf)++;
    					return OPEN;
    				}
    				else if (*(state->buf) != ' ')
    					return ERR;
    				break;
    			case WAITENDOPERAND:
    				if (*(state->buf) >= '0' && *(state->buf) <= '9')
    				{
    					*curnnn = *(state->buf);
    					curnnn++;
    				}
    				else
    				{
    					*curnnn = '\0';
    					*val = (int4) atoi(nnn);
    					state->state = WAITOPERATOR;
    					return (state->count && *(state->buf) == '\0')
    						? ERR : VAL;
    				}
    				break;
    			case WAITOPERATOR:
    				if (*(state->buf) == '&' || *(state->buf) == '|')
    				{
    					state->state = WAITOPERAND;
    					*val = (int4) *(state->buf);
    					(state->buf)++;
    					return OPR;
    				}
    				else if (*(state->buf) == ')')
    				{
    					(state->buf)++;
    					state->count--;
    					return (state->count < 0) ? ERR : CLOSE;
    				}
    				else if (*(state->buf) == '\0')
    					return (state->count) ? ERR : END;
    				else if (*(state->buf) != ' ')
    					return ERR;
    				break;
    			default:
    				return ERR;
    				break;
    		}
    		(state->buf)++;
    	}
    	return END;
    }
    
    /*
     * push new one in polish notation reverse view
     */
    static void
    pushquery(WORKSTATE * state, int4 type, int4 val)
    {
    	NODE	   *tmp = (NODE *) palloc(sizeof(NODE));
    
    	tmp->type = type;
    	tmp->val = val;
    	tmp->next = state->str;
    	state->str = tmp;
    	state->num++;
    }
    
    #define STACKDEPTH	16
    
    /*
     * make polish notaion of query
     */
    static int4
    makepol(WORKSTATE * state)
    {
    	int4		val,
    				type;
    	int4		stack[STACKDEPTH];
    	int4		lenstack = 0;
    
    	while ((type = gettoken(state, &val)) != END)
    	{
    		switch (type)
    		{
    			case VAL:
    				pushquery(state, type, val);
    				while (lenstack && (stack[lenstack - 1] == (int4) '&' ||
    									stack[lenstack - 1] == (int4) '!'))
    				{
    					lenstack--;
    					pushquery(state, OPR, stack[lenstack]);
    				}
    				break;
    			case OPR:
    				if (lenstack && val == (int4) '|')
    					pushquery(state, OPR, val);
    				else
    				{
    					if (lenstack == STACKDEPTH)
    						elog(ERROR, "Stack too short");
    					stack[lenstack] = val;
    					lenstack++;
    				}
    				break;
    			case OPEN:
    				if (makepol(state) == ERR)
    					return ERR;
    				if (lenstack && (stack[lenstack - 1] == (int4) '&' ||
    								 stack[lenstack - 1] == (int4) '!'))
    				{
    					lenstack--;
    					pushquery(state, OPR, stack[lenstack]);
    				}
    				break;
    			case CLOSE:
    				while (lenstack)
    				{
    					lenstack--;
    					pushquery(state, OPR, stack[lenstack]);
    				};
    				return END;
    				break;
    			case ERR:
    			default:
    				elog(ERROR, "Syntax error");
    				return ERR;
    
    		}
    	}
    
    	while (lenstack)
    	{
    		lenstack--;
    		pushquery(state, OPR, stack[lenstack]);
    	};
    	return END;
    }
    
    typedef struct
    {
    	int4	   *arrb;
    	int4	   *arre;
    }	CHKVAL;
    
    /*
     * is there value 'val' in array or not ?
     */
    static bool
    checkcondition_arr(void *checkval, int4 val)
    {
    	int4	   *StopLow = ((CHKVAL *) checkval)->arrb;
    	int4	   *StopHigh = ((CHKVAL *) checkval)->arre;
    	int4	   *StopMiddle;
    
    	/* Loop invariant: StopLow <= val < StopHigh */
    
    	while (StopLow < StopHigh)
    	{
    		StopMiddle = StopLow + (StopHigh - StopLow) / 2;
    		if (*StopMiddle == val)
    			return (true);
    		else if (*StopMiddle < val)
    			StopLow = StopMiddle + 1;
    		else
    			StopHigh = StopMiddle;
    	}
    	return false;
    }
    
    static bool
    checkcondition_bit(void *checkval, int4 val)
    {
    	return GETBIT(checkval, HASHVAL(val));
    }
    
    /*
     * check for boolean condition
     */
    static bool
    execute(ITEM * curitem, void *checkval, bool calcnot, bool (*chkcond) (void *checkval, int4 val))
    {
    
    	if (curitem->type == VAL)
    		return (*chkcond) (checkval, curitem->val);
    	else if (curitem->val == (int4) '!')
    	{
    		return (calcnot) ?
    			((execute(curitem - 1, checkval, calcnot, chkcond)) ? false : true)
    			: true;
    	}
    	else if (curitem->val == (int4) '&')
    	{
    		if (execute(curitem + curitem->left, checkval, calcnot, chkcond))
    			return execute(curitem - 1, checkval, calcnot, chkcond);
    		else
    			return false;
    	}
    	else
    	{							/* |-operator */
    		if (execute(curitem + curitem->left, checkval, calcnot, chkcond))
    			return true;
    		else
    			return execute(curitem - 1, checkval, calcnot, chkcond);
    	}
    	return false;
    }
    
    /*
     * signconsistent & execconsistent called by *_consistent
     */
    static bool
    signconsistent(QUERYTYPE * query, BITVEC sign, bool calcnot)
    {
    	return execute(
    				   GETQUERY(query) + query->size - 1,
    				   (void *) sign, calcnot,
    				   checkcondition_bit
    	);
    }
    
    static bool
    execconsistent(QUERYTYPE * query, ArrayType *array, bool calcnot)
    {
    	CHKVAL		chkval;
    
    	chkval.arrb = ARRPTR(array);
    	chkval.arre = chkval.arrb + ARRNELEMS(array);
    	return execute(
    				   GETQUERY(query) + query->size - 1,
    				   (void *) &chkval, calcnot,
    				   checkcondition_arr
    		);
    }
    
    /*
     * boolean operations
     */
    Datum
    rboolop(PG_FUNCTION_ARGS)
    {
    	return DirectFunctionCall2(
    							   boolop,
    							   PG_GETARG_DATUM(1),
    							   PG_GETARG_DATUM(0)
    	);
    }
    
    Datum
    boolop(PG_FUNCTION_ARGS)
    {
    	ArrayType  *val = (ArrayType *) PG_DETOAST_DATUM_COPY(PG_GETARG_POINTER(0));
    	QUERYTYPE  *query = (QUERYTYPE *) PG_DETOAST_DATUM(PG_GETARG_POINTER(1));
    	CHKVAL		chkval;
    	bool		result;
    
    	if (ARRISVOID(val))
    	{
    		pfree(val);
    		PG_FREE_IF_COPY(query, 1);
    		PG_RETURN_BOOL(false);
    	}
    
    	PREPAREARR(val);
    	chkval.arrb = ARRPTR(val);
    	chkval.arre = chkval.arrb + ARRNELEMS(val);
    	result = execute(
    					 GETQUERY(query) + query->size - 1,
    					 &chkval, true,
    					 checkcondition_arr
    		);
    	pfree(val);
    
    	PG_FREE_IF_COPY(query, 1);
    	PG_RETURN_BOOL(result);
    }
    
    static void
    findoprnd(ITEM * ptr, int4 *pos)
    {
    #ifdef BS_DEBUG
    	elog(DEBUG3, (ptr[*pos].type == OPR) ?
    		 "%d  %c" : "%d  %d ", *pos, ptr[*pos].val);
    #endif
    	if (ptr[*pos].type == VAL)
    	{
    		ptr[*pos].left = 0;
    		(*pos)--;
    	}
    	else if (ptr[*pos].val == (int4) '!')
    	{
    		ptr[*pos].left = -1;
    		(*pos)--;
    		findoprnd(ptr, pos);
    	}
    	else
    	{
    		ITEM	   *curitem = &ptr[*pos];
    		int4		tmp = *pos;
    
    		(*pos)--;
    		findoprnd(ptr, pos);
    		curitem->left = *pos - tmp;
    		findoprnd(ptr, pos);
    	}
    }
    
    
    /*
     * input
     */
    Datum
    bqarr_in(PG_FUNCTION_ARGS)
    {
    	char	   *buf = (char *) PG_GETARG_POINTER(0);
    	WORKSTATE	state;
    	int4		i;
    	QUERYTYPE  *query;
    	int4		commonlen;
    	ITEM	   *ptr;
    	NODE	   *tmp;
    	int4		pos = 0;
    
    #ifdef BS_DEBUG
    	StringInfoData pbuf;
    #endif
    
    	state.buf = buf;
    	state.state = WAITOPERAND;
    	state.count = 0;
    	state.num = 0;
    	state.str = NULL;
    
    	/* make polish notation (postfix, but in reverse order) */
    	makepol(&state);
    	if (!state.num)
    		elog(ERROR, "Empty query");
    
    	commonlen = COMPUTESIZE(state.num);
    	query = (QUERYTYPE *) palloc(commonlen);
    	query->len = commonlen;
    	query->size = state.num;
    	ptr = GETQUERY(query);
    
    	for (i = state.num - 1; i >= 0; i--)
    	{
    		ptr[i].type = state.str->type;
    		ptr[i].val = state.str->val;
    		tmp = state.str->next;
    		pfree(state.str);
    		state.str = tmp;
    	}
    
    	pos = query->size - 1;
    	findoprnd(ptr, &pos);
    #ifdef BS_DEBUG
    	initStringInfo(&pbuf);
    	for (i = 0; i < query->size; i++)
    	{
    		if (ptr[i].type == OPR)
    			appendStringInfo(&pbuf, "%c(%d) ", ptr[i].val, ptr[i].left);
    		else
    			appendStringInfo(&pbuf, "%d ", ptr[i].val);
    	}
    	elog(DEBUG3, "POR: %s", pbuf.data);
    	pfree(pbuf.data);
    #endif
    
    	PG_RETURN_POINTER(query);
    }
    
    
    /*
     * out function
     */
    typedef struct
    {
    	ITEM	   *curpol;
    	char	   *buf;
    	char	   *cur;
    	int4		buflen;
    }	INFIX;
    
    #define RESIZEBUF(inf,addsize) while( ( inf->cur - inf->buf ) + addsize + 1 >= inf->buflen ) { \
    	int4 len = inf->cur - inf->buf; \
    	inf->buflen *= 2; \
    	inf->buf = (char*) repalloc( (void*)inf->buf, inf->buflen ); \
    	inf->cur = inf->buf + len; \
    }
    
    static void
    infix(INFIX * in, bool first)
    {
    	if (in->curpol->type == VAL)
    	{
    		RESIZEBUF(in, 11);
    		sprintf(in->cur, "%d", in->curpol->val);
    		in->cur = strchr(in->cur, '\0');
    		in->curpol--;
    	}
    	else if (in->curpol->val == (int4) '!')
    	{
    		bool		isopr = false;
    
    		RESIZEBUF(in, 1);
    		*(in->cur) = '!';
    		in->cur++;
    		*(in->cur) = '\0';
    		in->curpol--;
    		if (in->curpol->type == OPR)
    		{
    			isopr = true;
    			RESIZEBUF(in, 2);
    			sprintf(in->cur, "( ");
    			in->cur = strchr(in->cur, '\0');
    		}
    		infix(in, isopr);
    		if (isopr)
    		{
    			RESIZEBUF(in, 2);
    			sprintf(in->cur, " )");
    			in->cur = strchr(in->cur, '\0');
    		}
    	}
    	else
    	{
    		int4		op = in->curpol->val;
    		INFIX		nrm;
    
    		in->curpol--;
    		if (op == (int4) '|' && !first)
    		{
    			RESIZEBUF(in, 2);
    			sprintf(in->cur, "( ");
    			in->cur = strchr(in->cur, '\0');
    		}
    
    		nrm.curpol = in->curpol;
    		nrm.buflen = 16;
    		nrm.cur = nrm.buf = (char *) palloc(sizeof(char) * nrm.buflen);
    
    		/* get right operand */
    		infix(&nrm, false);
    
    		/* get & print left operand */
    		in->curpol = nrm.curpol;
    		infix(in, false);
    
    		/* print operator & right operand */
    		RESIZEBUF(in, 3 + (nrm.cur - nrm.buf));
    		sprintf(in->cur, " %c %s", op, nrm.buf);
    		in->cur = strchr(in->cur, '\0');
    		pfree(nrm.buf);
    
    		if (op == (int4) '|' && !first)
    		{
    			RESIZEBUF(in, 2);
    			sprintf(in->cur, " )");
    			in->cur = strchr(in->cur, '\0');
    		}
    	}
    }
    
    
    Datum
    bqarr_out(PG_FUNCTION_ARGS)
    {
    	QUERYTYPE  *query = (QUERYTYPE *) PG_DETOAST_DATUM(PG_GETARG_POINTER(0));
    	INFIX		nrm;
    
    	if (query->size == 0)
    		elog(ERROR, "Empty");
    	nrm.curpol = GETQUERY(query) + query->size - 1;
    	nrm.buflen = 32;
    	nrm.cur = nrm.buf = (char *) palloc(sizeof(char) * nrm.buflen);
    	*(nrm.cur) = '\0';
    	infix(&nrm, true);
    
    	PG_FREE_IF_COPY(query, 0);
    	PG_RETURN_POINTER(nrm.buf);
    }
    
    static int4
    countdroptree(ITEM * q, int4 pos)
    {
    	if (q[pos].type == VAL)
    		return 1;
    	else if (q[pos].val == (int4) '!')
    		return 1 + countdroptree(q, pos - 1);
    	else
    		return 1 + countdroptree(q, pos - 1) + countdroptree(q, pos + q[pos].left);
    }
    
    /*
     * common algorithm:
     * result of all '!' will be = 'true', so
     * we can modify query tree for clearing
     */
    static int4
    shorterquery(ITEM * q, int4 len)
    {
    	int4		index,
    				posnot,
    				poscor;
    	bool		notisleft = false;
    	int4		drop,
    				i;
    
    	/* out all '!' */
    	do
    	{
    		index = 0;
    		drop = 0;
    		/* find ! */
    		for (posnot = 0; posnot < len; posnot++)
    			if (q[posnot].type == OPR && q[posnot].val == (int4) '!')
    			{
    				index = 1;
    				break;
    			}
    
    		if (posnot == len)
    			return len;
    
    		/* last operator is ! */
    		if (posnot == len - 1)
    			return 0;
    
    		/* find operator for this operand */
    		for (poscor = posnot + 1; poscor < len; poscor++)
    		{
    			if (q[poscor].type == OPR)
    			{
    				if (poscor == posnot + 1)
    				{
    					notisleft = false;
    					break;
    				}
    				else if (q[poscor].left + poscor == posnot)
    				{
    					notisleft = true;
    					break;
    				}
    			}
    		}
    		if (q[poscor].val == (int4) '!')
    		{
    			drop = countdroptree(q, poscor);
    			q[poscor - 1].type = VAL;
    			for (i = poscor + 1; i < len; i++)
    				if (q[i].type == OPR && q[i].left + i <= poscor)
    					q[i].left += drop - 2;
    			memcpy((void *) &q[poscor - drop + 1],
    				   (void *) &q[poscor - 1],
    				   sizeof(ITEM) * (len - (poscor - 1)));
    			len -= drop - 2;
    		}
    		else if (q[poscor].val == (int4) '|')
    		{
    			drop = countdroptree(q, poscor);
    			q[poscor - 1].type = VAL;
    			q[poscor].val = (int4) '!';
    			q[poscor].left = -1;
    			for (i = poscor + 1; i < len; i++)
    				if (q[i].type == OPR && q[i].left + i < poscor)
    					q[i].left += drop - 2;
    			memcpy((void *) &q[poscor - drop + 1],
    				   (void *) &q[poscor - 1],
    				   sizeof(ITEM) * (len - (poscor - 1)));
    			len -= drop - 2;
    		}
    		else
    		{						/* &-operator */
    			if (
    				(notisleft && q[poscor - 1].type == OPR &&
    				 q[poscor - 1].val == (int4) '!') ||
    				(!notisleft && q[poscor + q[poscor].left].type == OPR &&
    				 q[poscor + q[poscor].left].val == (int4) '!')
    				)
    			{					/* drop subtree */
    				drop = countdroptree(q, poscor);
    				q[poscor - 1].type = VAL;
    				q[poscor].val = (int4) '!';
    				q[poscor].left = -1;
    				for (i = poscor + 1; i < len; i++)
    					if (q[i].type == OPR && q[i].left + i < poscor)
    						q[i].left += drop - 2;
    				memcpy((void *) &q[poscor - drop + 1],
    					   (void *) &q[poscor - 1],
    					   sizeof(ITEM) * (len - (poscor - 1)));
    				len -= drop - 2;
    			}
    			else
    			{					/* drop only operator */
    				int4		subtreepos = (notisleft) ?
    				poscor - 1 : poscor + q[poscor].left;
    				int4		subtreelen = countdroptree(q, subtreepos);
    
    				drop = countdroptree(q, poscor);
    				for (i = poscor + 1; i < len; i++)
    					if (q[i].type == OPR && q[i].left + i < poscor)
    						q[i].left += drop - subtreelen;
    				memcpy((void *) &q[subtreepos + 1],
    					   (void *) &q[poscor + 1],
    					   sizeof(ITEM) * (len - (poscor - 1)));
    				memcpy((void *) &q[poscor - drop + 1],
    					   (void *) &q[subtreepos - subtreelen + 1],
    					   sizeof(ITEM) * (len - (drop - subtreelen)));
    				len -= drop - subtreelen;
    			}
    		}
    	} while (index);
    	return len;
    }
    
    
    Datum
    querytree(PG_FUNCTION_ARGS)
    {
    	QUERYTYPE  *query = (QUERYTYPE *) PG_DETOAST_DATUM(PG_GETARG_POINTER(0));
    	INFIX		nrm;
    	text	   *res;
    	ITEM	   *q;
    	int4		len;
    
    	if (query->size == 0)
    		elog(ERROR, "Empty");
    
    	q = (ITEM *) palloc(sizeof(ITEM) * query->size);
    	memcpy((void *) q, GETQUERY(query), sizeof(ITEM) * query->size);
    	len = shorterquery(q, query->size);
    	PG_FREE_IF_COPY(query, 0);
    
    	if (len == 0)
    	{
    		res = (text *) palloc(1 + VARHDRSZ);
    		VARATT_SIZEP(res) = 1 + VARHDRSZ;
    		*((char *) VARDATA(res)) = 'T';
    	}
    	else
    	{
    		nrm.curpol = q + len - 1;
    		nrm.buflen = 32;
    		nrm.cur = nrm.buf = (char *) palloc(sizeof(char) * nrm.buflen);
    		*(nrm.cur) = '\0';
    		infix(&nrm, true);
    
    		res = (text *) palloc(nrm.cur - nrm.buf + VARHDRSZ);
    		VARATT_SIZEP(res) = nrm.cur - nrm.buf + VARHDRSZ;
    		strncpy(VARDATA(res), nrm.buf, nrm.cur - nrm.buf);
    	}
    	pfree(q);
    
    	PG_RETURN_POINTER(res);
    }
    
    /*
    ** Additional array functions
    */
    static int32 intarray_match_first(ArrayType *a, int32 elem);
    static ArrayType *intarray_add_elem(ArrayType *a, int32 elem);
    static ArrayType *intarray_concat_arrays(ArrayType *a, ArrayType *b);
    static ArrayType *int_to_intset(int32 elem);
    
    PG_FUNCTION_INFO_V1(intset);
    PG_FUNCTION_INFO_V1(icount);
    PG_FUNCTION_INFO_V1(sort);
    PG_FUNCTION_INFO_V1(sort_asc);
    PG_FUNCTION_INFO_V1(sort_desc);
    PG_FUNCTION_INFO_V1(uniq);
    PG_FUNCTION_INFO_V1(idx);
    PG_FUNCTION_INFO_V1(subarray);
    PG_FUNCTION_INFO_V1(intarray_push_elem);
    PG_FUNCTION_INFO_V1(intarray_push_array);
    PG_FUNCTION_INFO_V1(intarray_del_elem);
    PG_FUNCTION_INFO_V1(intset_union_elem);
    PG_FUNCTION_INFO_V1(intset_subtract);
    Datum		intset(PG_FUNCTION_ARGS);
    Datum		icount(PG_FUNCTION_ARGS);
    Datum		sort(PG_FUNCTION_ARGS);
    Datum		sort_asc(PG_FUNCTION_ARGS);
    Datum		sort_desc(PG_FUNCTION_ARGS);
    Datum		uniq(PG_FUNCTION_ARGS);
    Datum		idx(PG_FUNCTION_ARGS);
    Datum		subarray(PG_FUNCTION_ARGS);
    Datum		intarray_push_elem(PG_FUNCTION_ARGS);
    Datum		intarray_push_array(PG_FUNCTION_ARGS);
    Datum		intarray_del_elem(PG_FUNCTION_ARGS);
    Datum		intset_union_elem(PG_FUNCTION_ARGS);
    Datum		intset_subtract(PG_FUNCTION_ARGS);
    
    static int32
    intarray_match_first(ArrayType *a, int32 elem)
    {
    	int32	   *aa,
    				c,
    				i;
    
    	c = (ARRISVOID(a)) ? 0 : ARRNELEMS(a);
    	aa = ARRPTR(a);
    	for (i = 0; i < c; i++)
    		if (aa[i] == elem)
    			return (i + 1);
    	return 0;
    }
    
    static ArrayType *
    intarray_add_elem(ArrayType *a, int32 elem)
    {
    	ArrayType  *result;
    	int32	   *r;
    	int32		c = (ARRISVOID(a)) ? 0 : ARRNELEMS(a);
    
    	result = new_intArrayType(c + 1);
    	r = ARRPTR(result);
    	if (c > 0)
    		memcpy(r, ARRPTR(a), c * sizeof(int32));
    	r[c] = elem;
    	return result;
    }
    
    static ArrayType *
    intarray_concat_arrays(ArrayType *a, ArrayType *b)
    {
    	ArrayType  *result;
    	int32		ac = (ARRISVOID(a)) ? 0 : ARRNELEMS(a);
    	int32		bc = (ARRISVOID(b)) ? 0 : ARRNELEMS(b);
    
    	result = new_intArrayType(ac + bc);
    	if (ac)
    		memcpy(ARRPTR(result), ARRPTR(a), ac * sizeof(int32));
    	if (bc)
    		memcpy(ARRPTR(result) + ac, ARRPTR(b), bc * sizeof(int32));
    	return result;
    }
    
    static ArrayType *
    int_to_intset(int32 n)
    {
    	ArrayType  *result;
    	int32	   *aa;
    
    	result = new_intArrayType(1);
    	aa = ARRPTR(result);
    	aa[0] = n;
    	return result;
    }
    
    static int
    compASC(const void *a, const void *b)
    {
    	if (*(int4 *) a == *(int4 *) b)
    		return 0;
    	return (*(int4 *) a > *(int4 *) b) ? 1 : -1;
    }
    
    static int
    compDESC(const void *a, const void *b)
    {
    	if (*(int4 *) a == *(int4 *) b)
    		return 0;
    	return (*(int4 *) a < *(int4 *) b) ? 1 : -1;
    }
    
    #define QSORT(a, direction)						\
    if (ARRNELEMS(a) > 1)						\
    	qsort((void*)ARRPTR(a), ARRNELEMS(a),sizeof(int4),	\
    		(direction) ? compASC : compDESC )
    
    #define UNIX_UNIQ(a) a = resize_intArrayType(a, unix_uniq(ARRPTR(a), ARRNELEMS(a)))
    
    static int32
    unix_uniq(int32 *array, int32 count)
    {
    	register int32 i,
    				k = 0;
    
    	for (i = 1; i < count; i++)
    		if (array[k] != array[i])
    		{
    			k++;
    			if (i > k)
    				array[k] = array[i];
    		}
    	return (k + 1);
    }
    
    Datum
    intset(PG_FUNCTION_ARGS)
    {
    	PG_RETURN_POINTER(int_to_intset(PG_GETARG_INT32(0)));
    }
    
    Datum
    icount(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM(PG_GETARG_DATUM(0)));
    	int32		count = (ARRISVOID(a)) ? 0 : ARRNELEMS(a);
    
    	PG_FREE_IF_COPY(a, 0);
    	PG_RETURN_INT32(count);
    }
    
    Datum
    sort(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    	text	   *dirstr = (fcinfo->nargs == 2) ? PG_GETARG_TEXT_P(1) : NULL;
    	int32		dc = (dirstr) ? VARSIZE(dirstr) - VARHDRSZ : 0;
    	char	   *d = (dirstr) ? VARDATA(dirstr) : NULL;
    	int			dir = -1;
    
    	if (ARRISVOID(a) || ARRNELEMS(a) < 2)
    		PG_RETURN_POINTER(a);
    
    	if (dirstr == NULL || (dc == 3
    						   && (d[0] == 'A' || d[0] == 'a')
    						   && (d[1] == 'S' || d[1] == 's')
    						   && (d[2] == 'C' || d[2] == 'c')))
    		dir = 1;
    	else if (dc == 4
    			 && (d[0] == 'D' || d[0] == 'd')
    			 && (d[1] == 'E' || d[1] == 'e')
    			 && (d[2] == 'S' || d[2] == 's')
    			 && (d[3] == 'C' || d[3] == 'c'))
    		dir = 0;
    	if (dir == -1)
    		elog(ERROR, "Invalid second parameter in function sort. It must be 'ASC' or 'DESC'.");
    	QSORT(a, dir);
    	PG_RETURN_POINTER(a);
    }
    
    Datum
    sort_asc(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    
    	if (ARRISVOID(a))
    		PG_RETURN_POINTER(a);
    	QSORT(a, 1);
    	PG_RETURN_POINTER(a);
    }
    
    Datum
    sort_desc(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    
    	if (ARRISVOID(a))
    		PG_RETURN_POINTER(a);
    	QSORT(a, 0);
    	PG_RETURN_POINTER(a);
    }
    
    Datum
    uniq(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    
    	if (ARRISVOID(a) || ARRNELEMS(a) < 2)
    		PG_RETURN_POINTER(a);
    	UNIX_UNIQ(a);
    	PG_RETURN_POINTER(a);
    }
    
    Datum
    idx(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM(PG_GETARG_DATUM(0)));
    	int32		result = (ARRISVOID(a)) ? 0 : ARRNELEMS(a);
    
    	if (result)
    		result = intarray_match_first(a, PG_GETARG_INT32(1));
    	PG_FREE_IF_COPY(a, 0);
    	PG_RETURN_INT32(result);
    }
    
    Datum
    subarray(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM(PG_GETARG_DATUM(0)));
    	ArrayType  *result;
    	int32		start = (PG_GETARG_INT32(1) > 0) ? PG_GETARG_INT32(1) - 1 : PG_GETARG_INT32(1);
    	int32		len = (fcinfo->nargs == 3) ? PG_GETARG_INT32(2) : 0;
    	int32		end = 0;
    	int32		c;
    
    	if (ARRISVOID(a))
    	{
    		PG_FREE_IF_COPY(a, 0);
    		PG_RETURN_POINTER(new_intArrayType(0));
    	}
    
    	c = ARRNELEMS(a);
    
    	if (start < 0)
    		start = c + start;
    
    	if (len < 0)
    		end = c + len;
    	else if (len == 0)
    		end = c;
    	else
    		end = start + len;
    
    	if (end > c)
    		end = c;
    
    	if (start < 0)
    		start = 0;
    
    	if (start >= end || end <= 0)
    	{
    		PG_FREE_IF_COPY(a, 0);
    		PG_RETURN_POINTER(new_intArrayType(0));
    	}
    
    
    	result = new_intArrayType(end - start);
    	if (end - start > 0)
    		memcpy(ARRPTR(result), ARRPTR(a) + start, (end - start) * sizeof(int32));
    	PG_FREE_IF_COPY(a, 0);
    	PG_RETURN_POINTER(result);
    }
    
    Datum
    intarray_push_elem(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM(PG_GETARG_DATUM(0)));
    	ArrayType  *result;
    
    	result = intarray_add_elem(a, PG_GETARG_INT32(1));
    	PG_FREE_IF_COPY(a, 0);
    	PG_RETURN_POINTER(result);
    }
    
    Datum
    intarray_push_array(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM(PG_GETARG_DATUM(0)));
    	ArrayType  *b = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM(PG_GETARG_DATUM(1)));
    	ArrayType  *result;
    
    	result = intarray_concat_arrays(a, b);
    	PG_FREE_IF_COPY(a, 0);
    	PG_FREE_IF_COPY(b, 1);
    	PG_RETURN_POINTER(result);
    }
    
    Datum
    intarray_del_elem(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    	int32		c = (ARRISVOID(a)) ? 0 : ARRNELEMS(a);
    	int32	   *aa = ARRPTR(a);
    	int32		n = 0,
    				i;
    	int32		elem = PG_GETARG_INT32(1);
    
    	for (i = 0; i < c; i++)
    		if (aa[i] != elem)
    		{
    			if (i > n)
    				aa[n++] = aa[i];
    			else
    				n++;
    		}
    	if (c > 0)
    		a = resize_intArrayType(a, n);
    	PG_RETURN_POINTER(a);
    }
    
    Datum
    intset_union_elem(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM(PG_GETARG_DATUM(0)));
    	ArrayType  *result;
    
    	result = intarray_add_elem(a, PG_GETARG_INT32(1));
    	PG_FREE_IF_COPY(a, 0);
    	QSORT(result, 1);
    	UNIX_UNIQ(result);
    	PG_RETURN_POINTER(result);
    }
    
    Datum
    intset_subtract(PG_FUNCTION_ARGS)
    {
    	ArrayType  *a = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
    	ArrayType  *b = (ArrayType *) DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
    	ArrayType  *result;
    	int32		ca = ARRISVOID(a);
    	int32		cb = ARRISVOID(b);
    	int32	   *aa,
    			   *bb,
    			   *r;
    	int32		n = 0,
    				i = 0,
    				k = 0;
    
    	QSORT(a, 1);
    	UNIX_UNIQ(a);
    	ca = ARRNELEMS(a);
    	QSORT(b, 1);
    	UNIX_UNIQ(b);
    	cb = ARRNELEMS(b);
    	result = new_intArrayType(ca);
    	aa = ARRPTR(a);
    	bb = ARRPTR(b);
    	r = ARRPTR(result);
    	while (i < ca)
    	{
    		if (k == cb || aa[i] < bb[k])
    			r[n++] = aa[i++];
    		else if (aa[i] == bb[k])
    		{
    			i++;
    			k++;
    		}
    		else
    			k++;
    	}
    	result = resize_intArrayType(result, n);
    	pfree(a);
    	pfree(b);
    	PG_RETURN_POINTER(result);
    }