-
Tom Lane authored
to eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU data structure (managed much like pg_subtrans) to represent multiple- transaction-ID sets. When more than one transaction is holding a shared lock on a particular row, we create a MultiXactId representing that set of transactions and store its ID in the row's XMAX. This scheme allows an effectively unlimited number of row locks, just as we did before, while not costing any extra overhead except when a shared lock actually has to be shared. Still TODO: use the regular lock manager to control the grant order when multiple backends are waiting for a row lock. Alvaro Herrera and Tom Lane.
Tom Lane authoredto eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU data structure (managed much like pg_subtrans) to represent multiple- transaction-ID sets. When more than one transaction is holding a shared lock on a particular row, we create a MultiXactId representing that set of transactions and store its ID in the row's XMAX. This scheme allows an effectively unlimited number of row locks, just as we did before, while not costing any extra overhead except when a shared lock actually has to be shared. Still TODO: use the regular lock manager to control the grant order when multiple backends are waiting for a row lock. Alvaro Herrera and Tom Lane.
lock.sgml 8.98 KiB