Skip to content
Snippets Groups Projects
Select Git revision
  • benchmark-tools
  • postgres-lambda
  • master default
  • REL9_4_25
  • REL9_5_20
  • REL9_6_16
  • REL_10_11
  • REL_11_6
  • REL_12_1
  • REL_12_0
  • REL_12_RC1
  • REL_12_BETA4
  • REL9_4_24
  • REL9_5_19
  • REL9_6_15
  • REL_10_10
  • REL_11_5
  • REL_12_BETA3
  • REL9_4_23
  • REL9_5_18
  • REL9_6_14
  • REL_10_9
  • REL_11_4
23 results

parse_expr.c

Blame
  • parse_expr.c 64.39 KiB
    /*-------------------------------------------------------------------------
     *
     * parse_expr.c
     *	  handle expressions in parser
     *
     * Portions Copyright (c) 1996-2010, PostgreSQL Global Development Group
     * Portions Copyright (c) 1994, Regents of the University of California
     *
     *
     * IDENTIFICATION
     *	  src/backend/parser/parse_expr.c
     *
     *-------------------------------------------------------------------------
     */
    
    #include "postgres.h"
    
    #include "catalog/pg_type.h"
    #include "commands/dbcommands.h"
    #include "miscadmin.h"
    #include "nodes/makefuncs.h"
    #include "nodes/nodeFuncs.h"
    #include "optimizer/var.h"
    #include "parser/analyze.h"
    #include "parser/parse_coerce.h"
    #include "parser/parse_expr.h"
    #include "parser/parse_func.h"
    #include "parser/parse_oper.h"
    #include "parser/parse_relation.h"
    #include "parser/parse_target.h"
    #include "parser/parse_type.h"
    #include "utils/builtins.h"
    #include "utils/lsyscache.h"
    #include "utils/xml.h"
    
    
    bool		Transform_null_equals = false;
    
    static Node *transformParamRef(ParseState *pstate, ParamRef *pref);
    static Node *transformAExprOp(ParseState *pstate, A_Expr *a);
    static Node *transformAExprAnd(ParseState *pstate, A_Expr *a);
    static Node *transformAExprOr(ParseState *pstate, A_Expr *a);
    static Node *transformAExprNot(ParseState *pstate, A_Expr *a);
    static Node *transformAExprOpAny(ParseState *pstate, A_Expr *a);
    static Node *transformAExprOpAll(ParseState *pstate, A_Expr *a);
    static Node *transformAExprDistinct(ParseState *pstate, A_Expr *a);
    static Node *transformAExprNullIf(ParseState *pstate, A_Expr *a);
    static Node *transformAExprOf(ParseState *pstate, A_Expr *a);
    static Node *transformAExprIn(ParseState *pstate, A_Expr *a);
    static Node *transformFuncCall(ParseState *pstate, FuncCall *fn);
    static Node *transformCaseExpr(ParseState *pstate, CaseExpr *c);
    static Node *transformSubLink(ParseState *pstate, SubLink *sublink);
    static Node *transformArrayExpr(ParseState *pstate, A_ArrayExpr *a,
    				   Oid array_type, Oid element_type, int32 typmod);
    static Node *transformRowExpr(ParseState *pstate, RowExpr *r);
    static Node *transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c);
    static Node *transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m);
    static Node *transformXmlExpr(ParseState *pstate, XmlExpr *x);
    static Node *transformXmlSerialize(ParseState *pstate, XmlSerialize *xs);
    static Node *transformBooleanTest(ParseState *pstate, BooleanTest *b);
    static Node *transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr);
    static Node *transformColumnRef(ParseState *pstate, ColumnRef *cref);
    static Node *transformWholeRowRef(ParseState *pstate, RangeTblEntry *rte,
    					 int location);
    static Node *transformIndirection(ParseState *pstate, Node *basenode,
    					 List *indirection);
    static Node *transformTypeCast(ParseState *pstate, TypeCast *tc);
    static Node *make_row_comparison_op(ParseState *pstate, List *opname,
    					   List *largs, List *rargs, int location);
    static Node *make_row_distinct_op(ParseState *pstate, List *opname,
    					 RowExpr *lrow, RowExpr *rrow, int location);
    static Expr *make_distinct_op(ParseState *pstate, List *opname,
    				 Node *ltree, Node *rtree, int location);
    
    
    /*
     * transformExpr -
     *	  Analyze and transform expressions. Type checking and type casting is
     *	  done here. The optimizer and the executor cannot handle the original
     *	  (raw) expressions collected by the parse tree. Hence the transformation
     *	  here.
     *
     * NOTE: there are various cases in which this routine will get applied to
     * an already-transformed expression.  Some examples:
     *	1. At least one construct (BETWEEN/AND) puts the same nodes
     *	into two branches of the parse tree; hence, some nodes
     *	are transformed twice.
     *	2. Another way it can happen is that coercion of an operator or
     *	function argument to the required type (via coerce_type())
     *	can apply transformExpr to an already-transformed subexpression.
     *	An example here is "SELECT count(*) + 1.0 FROM table".
     * While it might be possible to eliminate these cases, the path of
     * least resistance so far has been to ensure that transformExpr() does
     * no damage if applied to an already-transformed tree.  This is pretty
     * easy for cases where the transformation replaces one node type with
     * another, such as A_Const => Const; we just do nothing when handed
     * a Const.  More care is needed for node types that are used as both
     * input and output of transformExpr; see SubLink for example.
     */
    Node *
    transformExpr(ParseState *pstate, Node *expr)
    {
    	Node	   *result = NULL;
    
    	if (expr == NULL)
    		return NULL;
    
    	/* Guard against stack overflow due to overly complex expressions */
    	check_stack_depth();
    
    	switch (nodeTag(expr))
    	{
    		case T_ColumnRef:
    			result = transformColumnRef(pstate, (ColumnRef *) expr);
    			break;
    
    		case T_ParamRef:
    			result = transformParamRef(pstate, (ParamRef *) expr);
    			break;
    
    		case T_A_Const:
    			{
    				A_Const    *con = (A_Const *) expr;
    				Value	   *val = &con->val;
    
    				result = (Node *) make_const(pstate, val, con->location);
    				break;
    			}
    
    		case T_A_Indirection:
    			{
    				A_Indirection *ind = (A_Indirection *) expr;
    
    				result = transformExpr(pstate, ind->arg);
    				result = transformIndirection(pstate, result,
    											  ind->indirection);
    				break;
    			}
    
    		case T_A_ArrayExpr:
    			result = transformArrayExpr(pstate, (A_ArrayExpr *) expr,
    										InvalidOid, InvalidOid, -1);
    			break;
    
    		case T_TypeCast:
    			{
    				TypeCast   *tc = (TypeCast *) expr;
    
    				/*
    				 * If the subject of the typecast is an ARRAY[] construct and
    				 * the target type is an array type, we invoke
    				 * transformArrayExpr() directly so that we can pass down the
    				 * type information.  This avoids some cases where
    				 * transformArrayExpr() might not infer the correct type.
    				 */
    				if (IsA(tc->arg, A_ArrayExpr))
    				{
    					Oid			targetType;
    					Oid			elementType;
    					int32		targetTypmod;
    
    					targetType = typenameTypeId(pstate, tc->typeName,
    												&targetTypmod);
    					elementType = get_element_type(targetType);
    					if (OidIsValid(elementType))
    					{
    						/*
    						 * tranformArrayExpr doesn't know how to check domain
    						 * constraints, so ask it to return the base type
    						 * instead. transformTypeCast below will cast it to
    						 * the domain. In the usual case that the target is
    						 * not a domain, transformTypeCast is a no-op.
    						 */
    						targetType = getBaseTypeAndTypmod(targetType,
    														  &targetTypmod);
    
    						tc = copyObject(tc);
    						tc->arg = transformArrayExpr(pstate,
    													 (A_ArrayExpr *) tc->arg,
    													 targetType,
    													 elementType,
    													 targetTypmod);
    					}
    				}
    
    				result = transformTypeCast(pstate, tc);
    				break;
    			}
    
    		case T_A_Expr:
    			{
    				A_Expr	   *a = (A_Expr *) expr;
    
    				switch (a->kind)
    				{
    					case AEXPR_OP:
    						result = transformAExprOp(pstate, a);
    						break;
    					case AEXPR_AND:
    						result = transformAExprAnd(pstate, a);
    						break;
    					case AEXPR_OR:
    						result = transformAExprOr(pstate, a);
    						break;
    					case AEXPR_NOT:
    						result = transformAExprNot(pstate, a);
    						break;
    					case AEXPR_OP_ANY:
    						result = transformAExprOpAny(pstate, a);
    						break;
    					case AEXPR_OP_ALL:
    						result = transformAExprOpAll(pstate, a);
    						break;
    					case AEXPR_DISTINCT:
    						result = transformAExprDistinct(pstate, a);
    						break;
    					case AEXPR_NULLIF:
    						result = transformAExprNullIf(pstate, a);
    						break;
    					case AEXPR_OF:
    						result = transformAExprOf(pstate, a);
    						break;
    					case AEXPR_IN:
    						result = transformAExprIn(pstate, a);
    						break;
    					default:
    						elog(ERROR, "unrecognized A_Expr kind: %d", a->kind);
    				}
    				break;
    			}
    
    		case T_FuncCall:
    			result = transformFuncCall(pstate, (FuncCall *) expr);
    			break;
    
    		case T_NamedArgExpr:
    			{
    				NamedArgExpr *na = (NamedArgExpr *) expr;
    
    				na->arg = (Expr *) transformExpr(pstate, (Node *) na->arg);
    				result = expr;
    				break;
    			}
    
    		case T_SubLink:
    			result = transformSubLink(pstate, (SubLink *) expr);
    			break;
    
    		case T_CaseExpr:
    			result = transformCaseExpr(pstate, (CaseExpr *) expr);
    			break;
    
    		case T_RowExpr:
    			result = transformRowExpr(pstate, (RowExpr *) expr);
    			break;
    
    		case T_CoalesceExpr:
    			result = transformCoalesceExpr(pstate, (CoalesceExpr *) expr);
    			break;
    
    		case T_MinMaxExpr:
    			result = transformMinMaxExpr(pstate, (MinMaxExpr *) expr);
    			break;
    
    		case T_XmlExpr:
    			result = transformXmlExpr(pstate, (XmlExpr *) expr);
    			break;
    
    		case T_XmlSerialize:
    			result = transformXmlSerialize(pstate, (XmlSerialize *) expr);
    			break;
    
    		case T_NullTest:
    			{
    				NullTest   *n = (NullTest *) expr;
    
    				n->arg = (Expr *) transformExpr(pstate, (Node *) n->arg);
    				/* the argument can be any type, so don't coerce it */
    				n->argisrow = type_is_rowtype(exprType((Node *) n->arg));
    				result = expr;
    				break;
    			}
    
    		case T_BooleanTest:
    			result = transformBooleanTest(pstate, (BooleanTest *) expr);
    			break;
    
    		case T_CurrentOfExpr:
    			result = transformCurrentOfExpr(pstate, (CurrentOfExpr *) expr);
    			break;
    
    			/*********************************************
    			 * Quietly accept node types that may be presented when we are
    			 * called on an already-transformed tree.
    			 *
    			 * Do any other node types need to be accepted?  For now we are
    			 * taking a conservative approach, and only accepting node
    			 * types that are demonstrably necessary to accept.
    			 *********************************************/
    		case T_Var:
    		case T_Const:
    		case T_Param:
    		case T_Aggref:
    		case T_WindowFunc:
    		case T_ArrayRef:
    		case T_FuncExpr:
    		case T_OpExpr:
    		case T_DistinctExpr:
    		case T_ScalarArrayOpExpr:
    		case T_NullIfExpr:
    		case T_BoolExpr:
    		case T_FieldSelect:
    		case T_FieldStore:
    		case T_RelabelType:
    		case T_CoerceViaIO:
    		case T_ArrayCoerceExpr:
    		case T_ConvertRowtypeExpr:
    		case T_CaseTestExpr:
    		case T_ArrayExpr:
    		case T_CoerceToDomain:
    		case T_CoerceToDomainValue:
    		case T_SetToDefault:
    			{
    				result = (Node *) expr;
    				break;
    			}
    
    		default:
    			/* should not reach here */
    			elog(ERROR, "unrecognized node type: %d", (int) nodeTag(expr));
    			break;
    	}
    
    	return result;
    }
    
    /*
     * helper routine for delivering "column does not exist" error message
     *
     * (Usually we don't have to work this hard, but the general case of field
     * selection from an arbitrary node needs it.)
     */
    static void
    unknown_attribute(ParseState *pstate, Node *relref, char *attname,
    				  int location)
    {
    	RangeTblEntry *rte;
    
    	if (IsA(relref, Var) &&
    		((Var *) relref)->varattno == InvalidAttrNumber)
    	{
    		/* Reference the RTE by alias not by actual table name */
    		rte = GetRTEByRangeTablePosn(pstate,
    									 ((Var *) relref)->varno,
    									 ((Var *) relref)->varlevelsup);
    		ereport(ERROR,
    				(errcode(ERRCODE_UNDEFINED_COLUMN),
    				 errmsg("column %s.%s does not exist",
    						rte->eref->aliasname, attname),
    				 parser_errposition(pstate, location)));
    	}
    	else
    	{
    		/* Have to do it by reference to the type of the expression */
    		Oid			relTypeId = exprType(relref);
    
    		if (ISCOMPLEX(relTypeId))
    			ereport(ERROR,
    					(errcode(ERRCODE_UNDEFINED_COLUMN),
    					 errmsg("column \"%s\" not found in data type %s",
    							attname, format_type_be(relTypeId)),
    					 parser_errposition(pstate, location)));
    		else if (relTypeId == RECORDOID)
    			ereport(ERROR,
    					(errcode(ERRCODE_UNDEFINED_COLUMN),
    			   errmsg("could not identify column \"%s\" in record data type",
    					  attname),
    					 parser_errposition(pstate, location)));
    		else
    			ereport(ERROR,
    					(errcode(ERRCODE_WRONG_OBJECT_TYPE),
    					 errmsg("column notation .%s applied to type %s, "
    							"which is not a composite type",
    							attname, format_type_be(relTypeId)),
    					 parser_errposition(pstate, location)));
    	}
    }
    
    static Node *
    transformIndirection(ParseState *pstate, Node *basenode, List *indirection)
    {
    	Node	   *result = basenode;
    	List	   *subscripts = NIL;
    	int			location = exprLocation(basenode);
    	ListCell   *i;
    
    	/*
    	 * We have to split any field-selection operations apart from
    	 * subscripting.  Adjacent A_Indices nodes have to be treated as a single
    	 * multidimensional subscript operation.
    	 */
    	foreach(i, indirection)
    	{
    		Node	   *n = lfirst(i);
    
    		if (IsA(n, A_Indices))
    			subscripts = lappend(subscripts, n);
    		else if (IsA(n, A_Star))
    		{
    			ereport(ERROR,
    					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    					 errmsg("row expansion via \"*\" is not supported here"),
    					 parser_errposition(pstate, location)));
    		}
    		else
    		{
    			Node	   *newresult;
    
    			Assert(IsA(n, String));
    
    			/* process subscripts before this field selection */
    			if (subscripts)
    				result = (Node *) transformArraySubscripts(pstate,
    														   result,
    														   exprType(result),
    														   InvalidOid,
    														   exprTypmod(result),
    														   subscripts,
    														   NULL);
    			subscripts = NIL;
    
    			newresult = ParseFuncOrColumn(pstate,
    										  list_make1(n),
    										  list_make1(result),
    										  NIL, false, false, false,
    										  NULL, true, location);
    			if (newresult == NULL)
    				unknown_attribute(pstate, result, strVal(n), location);
    			result = newresult;
    		}
    	}
    	/* process trailing subscripts, if any */
    	if (subscripts)
    		result = (Node *) transformArraySubscripts(pstate,
    												   result,
    												   exprType(result),
    												   InvalidOid,
    												   exprTypmod(result),
    												   subscripts,
    												   NULL);
    
    	return result;
    }
    
    /*
     * Transform a ColumnRef.
     *
     * If you find yourself changing this code, see also ExpandColumnRefStar.
     */
    static Node *
    transformColumnRef(ParseState *pstate, ColumnRef *cref)
    {
    	Node	   *node = NULL;
    	char	   *nspname = NULL;
    	char	   *relname = NULL;
    	char	   *colname = NULL;
    	RangeTblEntry *rte;
    	int			levels_up;
    	enum
    	{
    		CRERR_NO_COLUMN,
    		CRERR_NO_RTE,
    		CRERR_WRONG_DB,
    		CRERR_TOO_MANY
    	}			crerr = CRERR_NO_COLUMN;
    
    	/*
    	 * Give the PreParseColumnRefHook, if any, first shot.	If it returns
    	 * non-null then that's all, folks.
    	 */
    	if (pstate->p_pre_columnref_hook != NULL)
    	{
    		node = (*pstate->p_pre_columnref_hook) (pstate, cref);
    		if (node != NULL)
    			return node;
    	}
    
    	/*----------
    	 * The allowed syntaxes are:
    	 *
    	 * A		First try to resolve as unqualified column name;
    	 *			if no luck, try to resolve as unqualified table name (A.*).
    	 * A.B		A is an unqualified table name; B is either a
    	 *			column or function name (trying column name first).
    	 * A.B.C	schema A, table B, col or func name C.
    	 * A.B.C.D	catalog A, schema B, table C, col or func D.
    	 * A.*		A is an unqualified table name; means whole-row value.
    	 * A.B.*	whole-row value of table B in schema A.
    	 * A.B.C.*	whole-row value of table C in schema B in catalog A.
    	 *
    	 * We do not need to cope with bare "*"; that will only be accepted by
    	 * the grammar at the top level of a SELECT list, and transformTargetList
    	 * will take care of it before it ever gets here.  Also, "A.*" etc will
    	 * be expanded by transformTargetList if they appear at SELECT top level,
    	 * so here we are only going to see them as function or operator inputs.
    	 *
    	 * Currently, if a catalog name is given then it must equal the current
    	 * database name; we check it here and then discard it.
    	 *----------
    	 */
    	switch (list_length(cref->fields))
    	{
    		case 1:
    			{
    				Node	   *field1 = (Node *) linitial(cref->fields);
    
    				Assert(IsA(field1, String));
    				colname = strVal(field1);
    
    				/* Try to identify as an unqualified column */
    				node = colNameToVar(pstate, colname, false, cref->location);
    
    				if (node == NULL)
    				{
    					/*
    					 * Not known as a column of any range-table entry.
    					 *
    					 * Consider the possibility that it's VALUE in a domain
    					 * check expression.  (We handle VALUE as a name, not a
    					 * keyword, to avoid breaking a lot of applications that
    					 * have used VALUE as a column name in the past.)
    					 */
    					if (pstate->p_value_substitute != NULL &&
    						strcmp(colname, "value") == 0)
    					{
    						node = (Node *) copyObject(pstate->p_value_substitute);
    
    						/*
    						 * Try to propagate location knowledge.  This should
    						 * be extended if p_value_substitute can ever take on
    						 * other node types.
    						 */
    						if (IsA(node, CoerceToDomainValue))
    							((CoerceToDomainValue *) node)->location = cref->location;
    						break;
    					}
    
    					/*
    					 * Try to find the name as a relation.	Note that only
    					 * relations already entered into the rangetable will be
    					 * recognized.
    					 *
    					 * This is a hack for backwards compatibility with
    					 * PostQUEL-inspired syntax.  The preferred form now is
    					 * "rel.*".
    					 */
    					rte = refnameRangeTblEntry(pstate, NULL, colname,
    											   cref->location,
    											   &levels_up);
    					if (rte)
    						node = transformWholeRowRef(pstate, rte,
    													cref->location);
    				}
    				break;
    			}
    		case 2:
    			{
    				Node	   *field1 = (Node *) linitial(cref->fields);
    				Node	   *field2 = (Node *) lsecond(cref->fields);
    
    				Assert(IsA(field1, String));
    				relname = strVal(field1);
    
    				/* Locate the referenced RTE */
    				rte = refnameRangeTblEntry(pstate, nspname, relname,
    										   cref->location,
    										   &levels_up);
    				if (rte == NULL)
    				{
    					crerr = CRERR_NO_RTE;
    					break;
    				}
    
    				/* Whole-row reference? */
    				if (IsA(field2, A_Star))
    				{
    					node = transformWholeRowRef(pstate, rte, cref->location);
    					break;
    				}
    
    				Assert(IsA(field2, String));
    				colname = strVal(field2);
    
    				/* Try to identify as a column of the RTE */
    				node = scanRTEForColumn(pstate, rte, colname, cref->location);
    				if (node == NULL)
    				{
    					/* Try it as a function call on the whole row */
    					node = transformWholeRowRef(pstate, rte, cref->location);
    					node = ParseFuncOrColumn(pstate,
    											 list_make1(makeString(colname)),
    											 list_make1(node),
    											 NIL, false, false, false,
    											 NULL, true, cref->location);
    				}
    				break;
    			}
    		case 3:
    			{
    				Node	   *field1 = (Node *) linitial(cref->fields);
    				Node	   *field2 = (Node *) lsecond(cref->fields);
    				Node	   *field3 = (Node *) lthird(cref->fields);
    
    				Assert(IsA(field1, String));
    				nspname = strVal(field1);
    				Assert(IsA(field2, String));
    				relname = strVal(field2);
    
    				/* Locate the referenced RTE */
    				rte = refnameRangeTblEntry(pstate, nspname, relname,
    										   cref->location,
    										   &levels_up);
    				if (rte == NULL)
    				{
    					crerr = CRERR_NO_RTE;
    					break;
    				}
    
    				/* Whole-row reference? */
    				if (IsA(field3, A_Star))
    				{
    					node = transformWholeRowRef(pstate, rte, cref->location);
    					break;
    				}
    
    				Assert(IsA(field3, String));
    				colname = strVal(field3);
    
    				/* Try to identify as a column of the RTE */
    				node = scanRTEForColumn(pstate, rte, colname, cref->location);
    				if (node == NULL)
    				{
    					/* Try it as a function call on the whole row */
    					node = transformWholeRowRef(pstate, rte, cref->location);
    					node = ParseFuncOrColumn(pstate,
    											 list_make1(makeString(colname)),
    											 list_make1(node),
    											 NIL, false, false, false,
    											 NULL, true, cref->location);
    				}
    				break;
    			}
    		case 4:
    			{
    				Node	   *field1 = (Node *) linitial(cref->fields);
    				Node	   *field2 = (Node *) lsecond(cref->fields);
    				Node	   *field3 = (Node *) lthird(cref->fields);
    				Node	   *field4 = (Node *) lfourth(cref->fields);
    				char	   *catname;
    
    				Assert(IsA(field1, String));
    				catname = strVal(field1);
    				Assert(IsA(field2, String));
    				nspname = strVal(field2);
    				Assert(IsA(field3, String));
    				relname = strVal(field3);
    
    				/*
    				 * We check the catalog name and then ignore it.
    				 */
    				if (strcmp(catname, get_database_name(MyDatabaseId)) != 0)
    				{
    					crerr = CRERR_WRONG_DB;
    					break;
    				}
    
    				/* Locate the referenced RTE */
    				rte = refnameRangeTblEntry(pstate, nspname, relname,
    										   cref->location,
    										   &levels_up);
    				if (rte == NULL)
    				{
    					crerr = CRERR_NO_RTE;
    					break;
    				}
    
    				/* Whole-row reference? */
    				if (IsA(field4, A_Star))
    				{
    					node = transformWholeRowRef(pstate, rte, cref->location);
    					break;
    				}
    
    				Assert(IsA(field4, String));
    				colname = strVal(field4);
    
    				/* Try to identify as a column of the RTE */
    				node = scanRTEForColumn(pstate, rte, colname, cref->location);
    				if (node == NULL)
    				{
    					/* Try it as a function call on the whole row */
    					node = transformWholeRowRef(pstate, rte, cref->location);
    					node = ParseFuncOrColumn(pstate,
    											 list_make1(makeString(colname)),
    											 list_make1(node),
    											 NIL, false, false, false,
    											 NULL, true, cref->location);
    				}
    				break;
    			}
    		default:
    			crerr = CRERR_TOO_MANY;		/* too many dotted names */
    			break;
    	}
    
    	/*
    	 * Now give the PostParseColumnRefHook, if any, a chance.  We pass the
    	 * translation-so-far so that it can throw an error if it wishes in the
    	 * case that it has a conflicting interpretation of the ColumnRef. (If it
    	 * just translates anyway, we'll throw an error, because we can't undo
    	 * whatever effects the preceding steps may have had on the pstate.) If it
    	 * returns NULL, use the standard translation, or throw a suitable error
    	 * if there is none.
    	 */
    	if (pstate->p_post_columnref_hook != NULL)
    	{
    		Node	   *hookresult;
    
    		hookresult = (*pstate->p_post_columnref_hook) (pstate, cref, node);
    		if (node == NULL)
    			node = hookresult;
    		else if (hookresult != NULL)
    			ereport(ERROR,
    					(errcode(ERRCODE_AMBIGUOUS_COLUMN),
    					 errmsg("column reference \"%s\" is ambiguous",
    							NameListToString(cref->fields)),
    					 parser_errposition(pstate, cref->location)));
    	}
    
    	/*
    	 * Throw error if no translation found.
    	 */
    	if (node == NULL)
    	{
    		switch (crerr)
    		{
    			case CRERR_NO_COLUMN:
    				if (relname)
    					ereport(ERROR,
    							(errcode(ERRCODE_UNDEFINED_COLUMN),
    							 errmsg("column %s.%s does not exist",
    									relname, colname),
    							 parser_errposition(pstate, cref->location)));
    
    				else
    					ereport(ERROR,
    							(errcode(ERRCODE_UNDEFINED_COLUMN),
    							 errmsg("column \"%s\" does not exist",
    									colname),
    							 parser_errposition(pstate, cref->location)));
    				break;
    			case CRERR_NO_RTE:
    				errorMissingRTE(pstate, makeRangeVar(nspname, relname,
    													 cref->location));
    				break;
    			case CRERR_WRONG_DB:
    				ereport(ERROR,
    						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    				  errmsg("cross-database references are not implemented: %s",
    						 NameListToString(cref->fields)),
    						 parser_errposition(pstate, cref->location)));
    				break;
    			case CRERR_TOO_MANY:
    				ereport(ERROR,
    						(errcode(ERRCODE_SYNTAX_ERROR),
    				errmsg("improper qualified name (too many dotted names): %s",
    					   NameListToString(cref->fields)),
    						 parser_errposition(pstate, cref->location)));
    				break;
    		}
    	}
    
    	return node;
    }
    
    static Node *
    transformParamRef(ParseState *pstate, ParamRef *pref)
    {
    	Node	   *result;
    
    	/*
    	 * The core parser knows nothing about Params.	If a hook is supplied,
    	 * call it.  If not, or if the hook returns NULL, throw a generic error.
    	 */
    	if (pstate->p_paramref_hook != NULL)
    		result = (*pstate->p_paramref_hook) (pstate, pref);
    	else
    		result = NULL;
    
    	if (result == NULL)
    		ereport(ERROR,
    				(errcode(ERRCODE_UNDEFINED_PARAMETER),
    				 errmsg("there is no parameter $%d", pref->number),
    				 parser_errposition(pstate, pref->location)));
    
    	return result;
    }
    
    /* Test whether an a_expr is a plain NULL constant or not */
    static bool
    exprIsNullConstant(Node *arg)
    {
    	if (arg && IsA(arg, A_Const))
    	{
    		A_Const    *con = (A_Const *) arg;
    
    		if (con->val.type == T_Null)
    			return true;
    	}
    	return false;
    }
    
    static Node *
    transformAExprOp(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = a->lexpr;
    	Node	   *rexpr = a->rexpr;
    	Node	   *result;
    
    	/*
    	 * Special-case "foo = NULL" and "NULL = foo" for compatibility with
    	 * standards-broken products (like Microsoft's).  Turn these into IS NULL
    	 * exprs.
    	 */
    	if (Transform_null_equals &&
    		list_length(a->name) == 1 &&
    		strcmp(strVal(linitial(a->name)), "=") == 0 &&
    		(exprIsNullConstant(lexpr) || exprIsNullConstant(rexpr)))
    	{
    		NullTest   *n = makeNode(NullTest);
    
    		n->nulltesttype = IS_NULL;
    
    		if (exprIsNullConstant(lexpr))
    			n->arg = (Expr *) rexpr;
    		else
    			n->arg = (Expr *) lexpr;
    
    		result = transformExpr(pstate, (Node *) n);
    	}
    	else if (lexpr && IsA(lexpr, RowExpr) &&
    			 rexpr && IsA(rexpr, SubLink) &&
    			 ((SubLink *) rexpr)->subLinkType == EXPR_SUBLINK)
    	{
    		/*
    		 * Convert "row op subselect" into a ROWCOMPARE sublink. Formerly the
    		 * grammar did this, but now that a row construct is allowed anywhere
    		 * in expressions, it's easier to do it here.
    		 */
    		SubLink    *s = (SubLink *) rexpr;
    
    		s->subLinkType = ROWCOMPARE_SUBLINK;
    		s->testexpr = lexpr;
    		s->operName = a->name;
    		s->location = a->location;
    		result = transformExpr(pstate, (Node *) s);
    	}
    	else if (lexpr && IsA(lexpr, RowExpr) &&
    			 rexpr && IsA(rexpr, RowExpr))
    	{
    		/* "row op row" */
    		lexpr = transformExpr(pstate, lexpr);
    		rexpr = transformExpr(pstate, rexpr);
    		Assert(IsA(lexpr, RowExpr));
    		Assert(IsA(rexpr, RowExpr));
    
    		result = make_row_comparison_op(pstate,
    										a->name,
    										((RowExpr *) lexpr)->args,
    										((RowExpr *) rexpr)->args,
    										a->location);
    	}
    	else
    	{
    		/* Ordinary scalar operator */
    		lexpr = transformExpr(pstate, lexpr);
    		rexpr = transformExpr(pstate, rexpr);
    
    		result = (Node *) make_op(pstate,
    								  a->name,
    								  lexpr,
    								  rexpr,
    								  a->location);
    	}
    
    	return result;
    }
    
    static Node *
    transformAExprAnd(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	lexpr = coerce_to_boolean(pstate, lexpr, "AND");
    	rexpr = coerce_to_boolean(pstate, rexpr, "AND");
    
    	return (Node *) makeBoolExpr(AND_EXPR,
    								 list_make2(lexpr, rexpr),
    								 a->location);
    }
    
    static Node *
    transformAExprOr(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	lexpr = coerce_to_boolean(pstate, lexpr, "OR");
    	rexpr = coerce_to_boolean(pstate, rexpr, "OR");
    
    	return (Node *) makeBoolExpr(OR_EXPR,
    								 list_make2(lexpr, rexpr),
    								 a->location);
    }
    
    static Node *
    transformAExprNot(ParseState *pstate, A_Expr *a)
    {
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	rexpr = coerce_to_boolean(pstate, rexpr, "NOT");
    
    	return (Node *) makeBoolExpr(NOT_EXPR,
    								 list_make1(rexpr),
    								 a->location);
    }
    
    static Node *
    transformAExprOpAny(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	return (Node *) make_scalar_array_op(pstate,
    										 a->name,
    										 true,
    										 lexpr,
    										 rexpr,
    										 a->location);
    }
    
    static Node *
    transformAExprOpAll(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	return (Node *) make_scalar_array_op(pstate,
    										 a->name,
    										 false,
    										 lexpr,
    										 rexpr,
    										 a->location);
    }
    
    static Node *
    transformAExprDistinct(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	if (lexpr && IsA(lexpr, RowExpr) &&
    		rexpr && IsA(rexpr, RowExpr))
    	{
    		/* "row op row" */
    		return make_row_distinct_op(pstate, a->name,
    									(RowExpr *) lexpr,
    									(RowExpr *) rexpr,
    									a->location);
    	}
    	else
    	{
    		/* Ordinary scalar operator */
    		return (Node *) make_distinct_op(pstate,
    										 a->name,
    										 lexpr,
    										 rexpr,
    										 a->location);
    	}
    }
    
    static Node *
    transformAExprNullIf(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    	Node	   *result;
    
    	result = (Node *) make_op(pstate,
    							  a->name,
    							  lexpr,
    							  rexpr,
    							  a->location);
    	if (((OpExpr *) result)->opresulttype != BOOLOID)
    		ereport(ERROR,
    				(errcode(ERRCODE_DATATYPE_MISMATCH),
    				 errmsg("NULLIF requires = operator to yield boolean"),
    				 parser_errposition(pstate, a->location)));
    
    	/*
    	 * We rely on NullIfExpr and OpExpr being the same struct
    	 */
    	NodeSetTag(result, T_NullIfExpr);
    
    	return result;
    }
    
    static Node *
    transformAExprOf(ParseState *pstate, A_Expr *a)
    {
    	/*
    	 * Checking an expression for match to a list of type names. Will result
    	 * in a boolean constant node.
    	 */
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Const	   *result;
    	ListCell   *telem;
    	Oid			ltype,
    				rtype;
    	bool		matched = false;
    
    	ltype = exprType(lexpr);
    	foreach(telem, (List *) a->rexpr)
    	{
    		rtype = typenameTypeId(pstate, lfirst(telem), NULL);
    		matched = (rtype == ltype);
    		if (matched)
    			break;
    	}
    
    	/*
    	 * We have two forms: equals or not equals. Flip the sense of the result
    	 * for not equals.
    	 */
    	if (strcmp(strVal(linitial(a->name)), "<>") == 0)
    		matched = (!matched);
    
    	result = (Const *) makeBoolConst(matched, false);
    
    	/* Make the result have the original input's parse location */
    	result->location = exprLocation((Node *) a);
    
    	return (Node *) result;
    }
    
    static Node *
    transformAExprIn(ParseState *pstate, A_Expr *a)
    {
    	Node	   *result = NULL;
    	Node	   *lexpr;
    	List	   *rexprs;
    	List	   *rvars;
    	List	   *rnonvars;
    	bool		useOr;
    	bool		haveRowExpr;
    	ListCell   *l;
    
    	/*
    	 * If the operator is <>, combine with AND not OR.
    	 */
    	if (strcmp(strVal(linitial(a->name)), "<>") == 0)
    		useOr = false;
    	else
    		useOr = true;
    
    	/*
    	 * We try to generate a ScalarArrayOpExpr from IN/NOT IN, but this is only
    	 * possible if the inputs are all scalars (no RowExprs) and there is a
    	 * suitable array type available.  If not, we fall back to a boolean
    	 * condition tree with multiple copies of the lefthand expression. Also,
    	 * any IN-list items that contain Vars are handled as separate boolean
    	 * conditions, because that gives the planner more scope for optimization
    	 * on such clauses.
    	 *
    	 * First step: transform all the inputs, and detect whether any are
    	 * RowExprs or contain Vars.
    	 */
    	lexpr = transformExpr(pstate, a->lexpr);
    	haveRowExpr = (lexpr && IsA(lexpr, RowExpr));
    	rexprs = rvars = rnonvars = NIL;
    	foreach(l, (List *) a->rexpr)
    	{
    		Node	   *rexpr = transformExpr(pstate, lfirst(l));
    
    		haveRowExpr |= (rexpr && IsA(rexpr, RowExpr));
    		rexprs = lappend(rexprs, rexpr);
    		if (contain_vars_of_level(rexpr, 0))
    			rvars = lappend(rvars, rexpr);
    		else
    			rnonvars = lappend(rnonvars, rexpr);
    	}
    
    	/*
    	 * ScalarArrayOpExpr is only going to be useful if there's more than one
    	 * non-Var righthand item.	Also, it won't work for RowExprs.
    	 */
    	if (!haveRowExpr && list_length(rnonvars) > 1)
    	{
    		List	   *allexprs;
    		Oid			scalar_type;
    		Oid			array_type;
    
    		/*
    		 * Try to select a common type for the array elements.	Note that
    		 * since the LHS' type is first in the list, it will be preferred when
    		 * there is doubt (eg, when all the RHS items are unknown literals).
    		 *
    		 * Note: use list_concat here not lcons, to avoid damaging rnonvars.
    		 */
    		allexprs = list_concat(list_make1(lexpr), rnonvars);
    		scalar_type = select_common_type(pstate, allexprs, NULL, NULL);
    
    		/* Do we have an array type to use? */
    		if (OidIsValid(scalar_type))
    			array_type = get_array_type(scalar_type);
    		else
    			array_type = InvalidOid;
    		if (array_type != InvalidOid)
    		{
    			/*
    			 * OK: coerce all the right-hand non-Var inputs to the common type
    			 * and build an ArrayExpr for them.
    			 */
    			List	   *aexprs;
    			ArrayExpr  *newa;
    
    			aexprs = NIL;
    			foreach(l, rnonvars)
    			{
    				Node	   *rexpr = (Node *) lfirst(l);
    
    				rexpr = coerce_to_common_type(pstate, rexpr,
    											  scalar_type,
    											  "IN");
    				aexprs = lappend(aexprs, rexpr);
    			}
    			newa = makeNode(ArrayExpr);
    			newa->array_typeid = array_type;
    			newa->element_typeid = scalar_type;
    			newa->elements = aexprs;
    			newa->multidims = false;
    			newa->location = -1;
    
    			result = (Node *) make_scalar_array_op(pstate,
    												   a->name,
    												   useOr,
    												   lexpr,
    												   (Node *) newa,
    												   a->location);
    
    			/* Consider only the Vars (if any) in the loop below */
    			rexprs = rvars;
    		}
    	}
    
    	/*
    	 * Must do it the hard way, ie, with a boolean expression tree.
    	 */
    	foreach(l, rexprs)
    	{
    		Node	   *rexpr = (Node *) lfirst(l);
    		Node	   *cmp;
    
    		if (haveRowExpr)
    		{
    			if (!IsA(lexpr, RowExpr) ||
    				!IsA(rexpr, RowExpr))
    				ereport(ERROR,
    						(errcode(ERRCODE_SYNTAX_ERROR),
    				   errmsg("arguments of row IN must all be row expressions"),
    						 parser_errposition(pstate, a->location)));
    			cmp = make_row_comparison_op(pstate,
    										 a->name,
    							  (List *) copyObject(((RowExpr *) lexpr)->args),
    										 ((RowExpr *) rexpr)->args,
    										 a->location);
    		}
    		else
    			cmp = (Node *) make_op(pstate,
    								   a->name,
    								   copyObject(lexpr),
    								   rexpr,
    								   a->location);
    
    		cmp = coerce_to_boolean(pstate, cmp, "IN");
    		if (result == NULL)
    			result = cmp;
    		else
    			result = (Node *) makeBoolExpr(useOr ? OR_EXPR : AND_EXPR,
    										   list_make2(result, cmp),
    										   a->location);
    	}
    
    	return result;
    }
    
    static Node *
    transformFuncCall(ParseState *pstate, FuncCall *fn)
    {
    	List	   *targs;
    	ListCell   *args;
    
    	/* Transform the list of arguments ... */
    	targs = NIL;
    	foreach(args, fn->args)
    	{
    		targs = lappend(targs, transformExpr(pstate,
    											 (Node *) lfirst(args)));
    	}
    
    	/* ... and hand off to ParseFuncOrColumn */
    	return ParseFuncOrColumn(pstate,
    							 fn->funcname,
    							 targs,
    							 fn->agg_order,
    							 fn->agg_star,
    							 fn->agg_distinct,
    							 fn->func_variadic,
    							 fn->over,
    							 false,
    							 fn->location);
    }
    
    static Node *
    transformCaseExpr(ParseState *pstate, CaseExpr *c)
    {
    	CaseExpr   *newc;
    	Node	   *arg;
    	CaseTestExpr *placeholder;
    	List	   *newargs;
    	List	   *resultexprs;
    	ListCell   *l;
    	Node	   *defresult;
    	Oid			ptype;
    
    	/* If we already transformed this node, do nothing */
    	if (OidIsValid(c->casetype))
    		return (Node *) c;
    
    	newc = makeNode(CaseExpr);
    
    	/* transform the test expression, if any */
    	arg = transformExpr(pstate, (Node *) c->arg);
    
    	/* generate placeholder for test expression */
    	if (arg)
    	{
    		/*
    		 * If test expression is an untyped literal, force it to text. We have
    		 * to do something now because we won't be able to do this coercion on
    		 * the placeholder.  This is not as flexible as what was done in 7.4
    		 * and before, but it's good enough to handle the sort of silly coding
    		 * commonly seen.
    		 */
    		if (exprType(arg) == UNKNOWNOID)
    			arg = coerce_to_common_type(pstate, arg, TEXTOID, "CASE");
    
    		placeholder = makeNode(CaseTestExpr);
    		placeholder->typeId = exprType(arg);
    		placeholder->typeMod = exprTypmod(arg);
    	}
    	else
    		placeholder = NULL;
    
    	newc->arg = (Expr *) arg;
    
    	/* transform the list of arguments */
    	newargs = NIL;
    	resultexprs = NIL;
    	foreach(l, c->args)
    	{
    		CaseWhen   *w = (CaseWhen *) lfirst(l);
    		CaseWhen   *neww = makeNode(CaseWhen);
    		Node	   *warg;
    
    		Assert(IsA(w, CaseWhen));
    
    		warg = (Node *) w->expr;
    		if (placeholder)
    		{
    			/* shorthand form was specified, so expand... */
    			warg = (Node *) makeSimpleA_Expr(AEXPR_OP, "=",
    											 (Node *) placeholder,
    											 warg,
    											 w->location);
    		}
    		neww->expr = (Expr *) transformExpr(pstate, warg);
    
    		neww->expr = (Expr *) coerce_to_boolean(pstate,
    												(Node *) neww->expr,
    												"CASE/WHEN");
    
    		warg = (Node *) w->result;
    		neww->result = (Expr *) transformExpr(pstate, warg);
    		neww->location = w->location;
    
    		newargs = lappend(newargs, neww);
    		resultexprs = lappend(resultexprs, neww->result);
    	}
    
    	newc->args = newargs;
    
    	/* transform the default clause */
    	defresult = (Node *) c->defresult;
    	if (defresult == NULL)
    	{
    		A_Const    *n = makeNode(A_Const);
    
    		n->val.type = T_Null;
    		n->location = -1;
    		defresult = (Node *) n;
    	}
    	newc->defresult = (Expr *) transformExpr(pstate, defresult);
    
    	/*
    	 * Note: default result is considered the most significant type in
    	 * determining preferred type. This is how the code worked before, but it
    	 * seems a little bogus to me --- tgl
    	 */
    	resultexprs = lcons(newc->defresult, resultexprs);
    
    	ptype = select_common_type(pstate, resultexprs, "CASE", NULL);
    	Assert(OidIsValid(ptype));
    	newc->casetype = ptype;
    
    	/* Convert default result clause, if necessary */
    	newc->defresult = (Expr *)
    		coerce_to_common_type(pstate,
    							  (Node *) newc->defresult,
    							  ptype,
    							  "CASE/ELSE");
    
    	/* Convert when-clause results, if necessary */
    	foreach(l, newc->args)
    	{
    		CaseWhen   *w = (CaseWhen *) lfirst(l);
    
    		w->result = (Expr *)
    			coerce_to_common_type(pstate,
    								  (Node *) w->result,
    								  ptype,
    								  "CASE/WHEN");
    	}
    
    	newc->location = c->location;
    
    	return (Node *) newc;
    }
    
    static Node *
    transformSubLink(ParseState *pstate, SubLink *sublink)
    {
    	Node	   *result = (Node *) sublink;
    	Query	   *qtree;
    
    	/* If we already transformed this node, do nothing */
    	if (IsA(sublink->subselect, Query))
    		return result;
    
    	pstate->p_hasSubLinks = true;
    	qtree = parse_sub_analyze(sublink->subselect, pstate, NULL, false);
    
    	/*
    	 * Check that we got something reasonable.	Many of these conditions are
    	 * impossible given restrictions of the grammar, but check 'em anyway.
    	 */
    	if (!IsA(qtree, Query) ||
    		qtree->commandType != CMD_SELECT ||
    		qtree->utilityStmt != NULL)
    		elog(ERROR, "unexpected non-SELECT command in SubLink");
    	if (qtree->intoClause)
    		ereport(ERROR,
    				(errcode(ERRCODE_SYNTAX_ERROR),
    				 errmsg("subquery cannot have SELECT INTO"),
    				 parser_errposition(pstate,
    								 exprLocation((Node *) qtree->intoClause))));
    
    	sublink->subselect = (Node *) qtree;
    
    	if (sublink->subLinkType == EXISTS_SUBLINK)
    	{
    		/*
    		 * EXISTS needs no test expression or combining operator. These fields
    		 * should be null already, but make sure.
    		 */
    		sublink->testexpr = NULL;
    		sublink->operName = NIL;
    	}
    	else if (sublink->subLinkType == EXPR_SUBLINK ||
    			 sublink->subLinkType == ARRAY_SUBLINK)
    	{
    		ListCell   *tlist_item = list_head(qtree->targetList);
    
    		/*
    		 * Make sure the subselect delivers a single column (ignoring resjunk
    		 * targets).
    		 */
    		if (tlist_item == NULL ||
    			((TargetEntry *) lfirst(tlist_item))->resjunk)
    			ereport(ERROR,
    					(errcode(ERRCODE_SYNTAX_ERROR),
    					 errmsg("subquery must return a column"),
    					 parser_errposition(pstate, sublink->location)));
    		while ((tlist_item = lnext(tlist_item)) != NULL)
    		{
    			if (!((TargetEntry *) lfirst(tlist_item))->resjunk)
    				ereport(ERROR,
    						(errcode(ERRCODE_SYNTAX_ERROR),
    						 errmsg("subquery must return only one column"),
    						 parser_errposition(pstate, sublink->location)));
    		}
    
    		/*
    		 * EXPR and ARRAY need no test expression or combining operator. These
    		 * fields should be null already, but make sure.
    		 */
    		sublink->testexpr = NULL;
    		sublink->operName = NIL;
    	}
    	else
    	{
    		/* ALL, ANY, or ROWCOMPARE: generate row-comparing expression */
    		Node	   *lefthand;
    		List	   *left_list;
    		List	   *right_list;
    		ListCell   *l;
    
    		/*
    		 * Transform lefthand expression, and convert to a list
    		 */
    		lefthand = transformExpr(pstate, sublink->testexpr);
    		if (lefthand && IsA(lefthand, RowExpr))
    			left_list = ((RowExpr *) lefthand)->args;
    		else
    			left_list = list_make1(lefthand);
    
    		/*
    		 * Build a list of PARAM_SUBLINK nodes representing the output columns
    		 * of the subquery.
    		 */
    		right_list = NIL;
    		foreach(l, qtree->targetList)
    		{
    			TargetEntry *tent = (TargetEntry *) lfirst(l);
    			Param	   *param;
    
    			if (tent->resjunk)
    				continue;
    
    			param = makeNode(Param);
    			param->paramkind = PARAM_SUBLINK;
    			param->paramid = tent->resno;
    			param->paramtype = exprType((Node *) tent->expr);
    			param->paramtypmod = exprTypmod((Node *) tent->expr);
    			param->location = -1;
    
    			right_list = lappend(right_list, param);
    		}
    
    		/*
    		 * We could rely on make_row_comparison_op to complain if the list
    		 * lengths differ, but we prefer to generate a more specific error
    		 * message.
    		 */
    		if (list_length(left_list) < list_length(right_list))
    			ereport(ERROR,
    					(errcode(ERRCODE_SYNTAX_ERROR),
    					 errmsg("subquery has too many columns"),
    					 parser_errposition(pstate, sublink->location)));
    		if (list_length(left_list) > list_length(right_list))
    			ereport(ERROR,
    					(errcode(ERRCODE_SYNTAX_ERROR),
    					 errmsg("subquery has too few columns"),
    					 parser_errposition(pstate, sublink->location)));
    
    		/*
    		 * Identify the combining operator(s) and generate a suitable
    		 * row-comparison expression.
    		 */
    		sublink->testexpr = make_row_comparison_op(pstate,
    												   sublink->operName,
    												   left_list,
    												   right_list,
    												   sublink->location);
    	}
    
    	return result;
    }
    
    /*
     * transformArrayExpr
     *
     * If the caller specifies the target type, the resulting array will
     * be of exactly that type.  Otherwise we try to infer a common type
     * for the elements using select_common_type().
     */
    static Node *
    transformArrayExpr(ParseState *pstate, A_ArrayExpr *a,
    				   Oid array_type, Oid element_type, int32 typmod)
    {
    	ArrayExpr  *newa = makeNode(ArrayExpr);
    	List	   *newelems = NIL;
    	List	   *newcoercedelems = NIL;
    	ListCell   *element;
    	Oid			coerce_type;
    	bool		coerce_hard;
    
    	/*
    	 * Transform the element expressions
    	 *
    	 * Assume that the array is one-dimensional unless we find an array-type
    	 * element expression.
    	 */
    	newa->multidims = false;
    	foreach(element, a->elements)
    	{
    		Node	   *e = (Node *) lfirst(element);
    		Node	   *newe;
    
    		/*
    		 * If an element is itself an A_ArrayExpr, recurse directly so that we
    		 * can pass down any target type we were given.
    		 */
    		if (IsA(e, A_ArrayExpr))
    		{
    			newe = transformArrayExpr(pstate,
    									  (A_ArrayExpr *) e,
    									  array_type,
    									  element_type,
    									  typmod);
    			/* we certainly have an array here */
    			Assert(array_type == InvalidOid || array_type == exprType(newe));
    			newa->multidims = true;
    		}
    		else
    		{
    			newe = transformExpr(pstate, e);
    
    			/*
    			 * Check for sub-array expressions, if we haven't already found
    			 * one.
    			 */
    			if (!newa->multidims && type_is_array(exprType(newe)))
    				newa->multidims = true;
    		}
    
    		newelems = lappend(newelems, newe);
    	}
    
    	/*
    	 * Select a target type for the elements.
    	 *
    	 * If we haven't been given a target array type, we must try to deduce a
    	 * common type based on the types of the individual elements present.
    	 */
    	if (OidIsValid(array_type))
    	{
    		/* Caller must ensure array_type matches element_type */
    		Assert(OidIsValid(element_type));
    		coerce_type = (newa->multidims ? array_type : element_type);
    		coerce_hard = true;
    	}
    	else
    	{
    		/* Can't handle an empty array without a target type */
    		if (newelems == NIL)
    			ereport(ERROR,
    					(errcode(ERRCODE_INDETERMINATE_DATATYPE),
    					 errmsg("cannot determine type of empty array"),
    					 errhint("Explicitly cast to the desired type, "
    							 "for example ARRAY[]::integer[]."),
    					 parser_errposition(pstate, a->location)));
    
    		/* Select a common type for the elements */
    		coerce_type = select_common_type(pstate, newelems, "ARRAY", NULL);
    
    		if (newa->multidims)
    		{
    			array_type = coerce_type;
    			element_type = get_element_type(array_type);
    			if (!OidIsValid(element_type))
    				ereport(ERROR,
    						(errcode(ERRCODE_UNDEFINED_OBJECT),
    					   errmsg("could not find element type for data type %s",
    							  format_type_be(array_type)),
    						 parser_errposition(pstate, a->location)));
    		}
    		else
    		{
    			element_type = coerce_type;
    			array_type = get_array_type(element_type);
    			if (!OidIsValid(array_type))
    				ereport(ERROR,
    						(errcode(ERRCODE_UNDEFINED_OBJECT),
    						 errmsg("could not find array type for data type %s",
    								format_type_be(element_type)),
    						 parser_errposition(pstate, a->location)));
    		}
    		coerce_hard = false;
    	}
    
    	/*
    	 * Coerce elements to target type
    	 *
    	 * If the array has been explicitly cast, then the elements are in turn
    	 * explicitly coerced.
    	 *
    	 * If the array's type was merely derived from the common type of its
    	 * elements, then the elements are implicitly coerced to the common type.
    	 * This is consistent with other uses of select_common_type().
    	 */
    	foreach(element, newelems)
    	{
    		Node	   *e = (Node *) lfirst(element);
    		Node	   *newe;
    
    		if (coerce_hard)
    		{
    			newe = coerce_to_target_type(pstate, e,
    										 exprType(e),
    										 coerce_type,
    										 typmod,
    										 COERCION_EXPLICIT,
    										 COERCE_EXPLICIT_CAST,
    										 -1);
    			if (newe == NULL)
    				ereport(ERROR,
    						(errcode(ERRCODE_CANNOT_COERCE),
    						 errmsg("cannot cast type %s to %s",
    								format_type_be(exprType(e)),
    								format_type_be(coerce_type)),
    						 parser_errposition(pstate, exprLocation(e))));
    		}
    		else
    			newe = coerce_to_common_type(pstate, e,
    										 coerce_type,
    										 "ARRAY");
    		newcoercedelems = lappend(newcoercedelems, newe);
    	}
    
    	newa->array_typeid = array_type;
    	newa->element_typeid = element_type;
    	newa->elements = newcoercedelems;
    	newa->location = a->location;
    
    	return (Node *) newa;
    }
    
    static Node *
    transformRowExpr(ParseState *pstate, RowExpr *r)
    {
    	RowExpr    *newr = makeNode(RowExpr);
    
    	/* Transform the field expressions */
    	newr->args = transformExpressionList(pstate, r->args);
    
    	/* Barring later casting, we consider the type RECORD */
    	newr->row_typeid = RECORDOID;
    	newr->row_format = COERCE_IMPLICIT_CAST;
    	newr->colnames = NIL;		/* ROW() has anonymous columns */
    	newr->location = r->location;
    
    	return (Node *) newr;
    }
    
    static Node *
    transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c)
    {
    	CoalesceExpr *newc = makeNode(CoalesceExpr);
    	List	   *newargs = NIL;
    	List	   *newcoercedargs = NIL;
    	ListCell   *args;
    
    	foreach(args, c->args)
    	{
    		Node	   *e = (Node *) lfirst(args);
    		Node	   *newe;
    
    		newe = transformExpr(pstate, e);
    		newargs = lappend(newargs, newe);
    	}
    
    	newc->coalescetype = select_common_type(pstate, newargs, "COALESCE", NULL);
    
    	/* Convert arguments if necessary */
    	foreach(args, newargs)
    	{
    		Node	   *e = (Node *) lfirst(args);
    		Node	   *newe;
    
    		newe = coerce_to_common_type(pstate, e,
    									 newc->coalescetype,
    									 "COALESCE");
    		newcoercedargs = lappend(newcoercedargs, newe);
    	}
    
    	newc->args = newcoercedargs;
    	newc->location = c->location;
    	return (Node *) newc;
    }
    
    static Node *
    transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m)
    {
    	MinMaxExpr *newm = makeNode(MinMaxExpr);
    	List	   *newargs = NIL;
    	List	   *newcoercedargs = NIL;
    	const char *funcname = (m->op == IS_GREATEST) ? "GREATEST" : "LEAST";
    	ListCell   *args;
    
    	newm->op = m->op;
    	foreach(args, m->args)
    	{
    		Node	   *e = (Node *) lfirst(args);
    		Node	   *newe;
    
    		newe = transformExpr(pstate, e);
    		newargs = lappend(newargs, newe);
    	}
    
    	newm->minmaxtype = select_common_type(pstate, newargs, funcname, NULL);
    
    	/* Convert arguments if necessary */
    	foreach(args, newargs)
    	{
    		Node	   *e = (Node *) lfirst(args);
    		Node	   *newe;
    
    		newe = coerce_to_common_type(pstate, e,
    									 newm->minmaxtype,
    									 funcname);
    		newcoercedargs = lappend(newcoercedargs, newe);
    	}
    
    	newm->args = newcoercedargs;
    	newm->location = m->location;
    	return (Node *) newm;
    }
    
    static Node *
    transformXmlExpr(ParseState *pstate, XmlExpr *x)
    {
    	XmlExpr    *newx = makeNode(XmlExpr);
    	ListCell   *lc;
    	int			i;
    
    	newx->op = x->op;
    	if (x->name)
    		newx->name = map_sql_identifier_to_xml_name(x->name, false, false);
    	else
    		newx->name = NULL;
    	newx->xmloption = x->xmloption;
    	newx->location = x->location;
    
    	/*
    	 * gram.y built the named args as a list of ResTarget.	Transform each,
    	 * and break the names out as a separate list.
    	 */
    	newx->named_args = NIL;
    	newx->arg_names = NIL;
    
    	foreach(lc, x->named_args)
    	{
    		ResTarget  *r = (ResTarget *) lfirst(lc);
    		Node	   *expr;
    		char	   *argname;
    
    		Assert(IsA(r, ResTarget));
    
    		expr = transformExpr(pstate, r->val);
    
    		if (r->name)
    			argname = map_sql_identifier_to_xml_name(r->name, false, false);
    		else if (IsA(r->val, ColumnRef))
    			argname = map_sql_identifier_to_xml_name(FigureColname(r->val),
    													 true, false);
    		else
    		{
    			ereport(ERROR,
    					(errcode(ERRCODE_SYNTAX_ERROR),
    					 x->op == IS_XMLELEMENT
    			? errmsg("unnamed XML attribute value must be a column reference")
    			: errmsg("unnamed XML element value must be a column reference"),
    					 parser_errposition(pstate, r->location)));
    			argname = NULL;		/* keep compiler quiet */
    		}
    
    		/* reject duplicate argnames in XMLELEMENT only */
    		if (x->op == IS_XMLELEMENT)
    		{
    			ListCell   *lc2;
    
    			foreach(lc2, newx->arg_names)
    			{
    				if (strcmp(argname, strVal(lfirst(lc2))) == 0)
    					ereport(ERROR,
    							(errcode(ERRCODE_SYNTAX_ERROR),
    					errmsg("XML attribute name \"%s\" appears more than once",
    						   argname),
    							 parser_errposition(pstate, r->location)));
    			}
    		}
    
    		newx->named_args = lappend(newx->named_args, expr);
    		newx->arg_names = lappend(newx->arg_names, makeString(argname));
    	}
    
    	/* The other arguments are of varying types depending on the function */
    	newx->args = NIL;
    	i = 0;
    	foreach(lc, x->args)
    	{
    		Node	   *e = (Node *) lfirst(lc);
    		Node	   *newe;
    
    		newe = transformExpr(pstate, e);
    		switch (x->op)
    		{
    			case IS_XMLCONCAT:
    				newe = coerce_to_specific_type(pstate, newe, XMLOID,
    											   "XMLCONCAT");
    				break;
    			case IS_XMLELEMENT:
    				/* no coercion necessary */
    				break;
    			case IS_XMLFOREST:
    				newe = coerce_to_specific_type(pstate, newe, XMLOID,
    											   "XMLFOREST");
    				break;
    			case IS_XMLPARSE:
    				if (i == 0)
    					newe = coerce_to_specific_type(pstate, newe, TEXTOID,
    												   "XMLPARSE");
    				else
    					newe = coerce_to_boolean(pstate, newe, "XMLPARSE");
    				break;
    			case IS_XMLPI:
    				newe = coerce_to_specific_type(pstate, newe, TEXTOID,
    											   "XMLPI");
    				break;
    			case IS_XMLROOT:
    				if (i == 0)
    					newe = coerce_to_specific_type(pstate, newe, XMLOID,
    												   "XMLROOT");
    				else if (i == 1)
    					newe = coerce_to_specific_type(pstate, newe, TEXTOID,
    												   "XMLROOT");
    				else
    					newe = coerce_to_specific_type(pstate, newe, INT4OID,
    												   "XMLROOT");
    				break;
    			case IS_XMLSERIALIZE:
    				/* not handled here */
    				Assert(false);
    				break;
    			case IS_DOCUMENT:
    				newe = coerce_to_specific_type(pstate, newe, XMLOID,
    											   "IS DOCUMENT");
    				break;
    		}
    		newx->args = lappend(newx->args, newe);
    		i++;
    	}
    
    	return (Node *) newx;
    }
    
    static Node *
    transformXmlSerialize(ParseState *pstate, XmlSerialize *xs)
    {
    	Node	   *result;
    	XmlExpr    *xexpr;
    	Oid			targetType;
    	int32		targetTypmod;
    
    	xexpr = makeNode(XmlExpr);
    	xexpr->op = IS_XMLSERIALIZE;
    	xexpr->args = list_make1(coerce_to_specific_type(pstate,
    											 transformExpr(pstate, xs->expr),
    													 XMLOID,
    													 "XMLSERIALIZE"));
    
    	targetType = typenameTypeId(pstate, xs->typeName, &targetTypmod);
    
    	xexpr->xmloption = xs->xmloption;
    	xexpr->location = xs->location;
    	/* We actually only need these to be able to parse back the expression. */
    	xexpr->type = targetType;
    	xexpr->typmod = targetTypmod;
    
    	/*
    	 * The actual target type is determined this way.  SQL allows char and
    	 * varchar as target types.  We allow anything that can be cast implicitly
    	 * from text.  This way, user-defined text-like data types automatically
    	 * fit in.
    	 */
    	result = coerce_to_target_type(pstate, (Node *) xexpr,
    								   TEXTOID, targetType, targetTypmod,
    								   COERCION_IMPLICIT,
    								   COERCE_IMPLICIT_CAST,
    								   -1);
    	if (result == NULL)
    		ereport(ERROR,
    				(errcode(ERRCODE_CANNOT_COERCE),
    				 errmsg("cannot cast XMLSERIALIZE result to %s",
    						format_type_be(targetType)),
    				 parser_errposition(pstate, xexpr->location)));
    	return result;
    }
    
    static Node *
    transformBooleanTest(ParseState *pstate, BooleanTest *b)
    {
    	const char *clausename;
    
    	switch (b->booltesttype)
    	{
    		case IS_TRUE:
    			clausename = "IS TRUE";
    			break;
    		case IS_NOT_TRUE:
    			clausename = "IS NOT TRUE";
    			break;
    		case IS_FALSE:
    			clausename = "IS FALSE";
    			break;
    		case IS_NOT_FALSE:
    			clausename = "IS NOT FALSE";
    			break;
    		case IS_UNKNOWN:
    			clausename = "IS UNKNOWN";
    			break;
    		case IS_NOT_UNKNOWN:
    			clausename = "IS NOT UNKNOWN";
    			break;
    		default:
    			elog(ERROR, "unrecognized booltesttype: %d",
    				 (int) b->booltesttype);
    			clausename = NULL;	/* keep compiler quiet */
    	}
    
    	b->arg = (Expr *) transformExpr(pstate, (Node *) b->arg);
    
    	b->arg = (Expr *) coerce_to_boolean(pstate,
    										(Node *) b->arg,
    										clausename);
    
    	return (Node *) b;
    }
    
    static Node *
    transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr)
    {
    	int			sublevels_up;
    
    	/* CURRENT OF can only appear at top level of UPDATE/DELETE */
    	Assert(pstate->p_target_rangetblentry != NULL);
    	cexpr->cvarno = RTERangeTablePosn(pstate,
    									  pstate->p_target_rangetblentry,
    									  &sublevels_up);
    	Assert(sublevels_up == 0);
    
    	/*
    	 * Check to see if the cursor name matches a parameter of type REFCURSOR.
    	 * If so, replace the raw name reference with a parameter reference. (This
    	 * is a hack for the convenience of plpgsql.)
    	 */
    	if (cexpr->cursor_name != NULL)		/* in case already transformed */
    	{
    		ColumnRef  *cref = makeNode(ColumnRef);
    		Node	   *node = NULL;
    
    		/* Build an unqualified ColumnRef with the given name */
    		cref->fields = list_make1(makeString(cexpr->cursor_name));
    		cref->location = -1;
    
    		/* See if there is a translation available from a parser hook */
    		if (pstate->p_pre_columnref_hook != NULL)
    			node = (*pstate->p_pre_columnref_hook) (pstate, cref);
    		if (node == NULL && pstate->p_post_columnref_hook != NULL)
    			node = (*pstate->p_post_columnref_hook) (pstate, cref, NULL);
    
    		/*
    		 * XXX Should we throw an error if we get a translation that isn't a
    		 * refcursor Param?  For now it seems best to silently ignore false
    		 * matches.
    		 */
    		if (node != NULL && IsA(node, Param))
    		{
    			Param	   *p = (Param *) node;
    
    			if (p->paramkind == PARAM_EXTERN &&
    				p->paramtype == REFCURSOROID)
    			{
    				/* Matches, so convert CURRENT OF to a param reference */
    				cexpr->cursor_name = NULL;
    				cexpr->cursor_param = p->paramid;
    			}
    		}
    	}
    
    	return (Node *) cexpr;
    }
    
    /*
     * Construct a whole-row reference to represent the notation "relation.*".
     *
     * A whole-row reference is a Var with varno set to the correct range
     * table entry, and varattno == 0 to signal that it references the whole
     * tuple.  (Use of zero here is unclean, since it could easily be confused
     * with error cases, but it's not worth changing now.)  The vartype indicates
     * a rowtype; either a named composite type, or RECORD.
     */
    static Node *
    transformWholeRowRef(ParseState *pstate, RangeTblEntry *rte, int location)
    {
    	Var		   *result;
    	int			vnum;
    	int			sublevels_up;
    	Oid			toid;
    
    	/* Find the RTE's rangetable location */
    
    	vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
    
    	/* Build the appropriate referencing node */
    
    	switch (rte->rtekind)
    	{
    		case RTE_RELATION:
    			/* relation: the rowtype is a named composite type */
    			toid = get_rel_type_id(rte->relid);
    			if (!OidIsValid(toid))
    				elog(ERROR, "could not find type OID for relation %u",
    					 rte->relid);
    			result = makeVar(vnum,
    							 InvalidAttrNumber,
    							 toid,
    							 -1,
    							 sublevels_up);
    			break;
    		case RTE_FUNCTION:
    			toid = exprType(rte->funcexpr);
    			if (type_is_rowtype(toid))
    			{
    				/* func returns composite; same as relation case */
    				result = makeVar(vnum,
    								 InvalidAttrNumber,
    								 toid,
    								 -1,
    								 sublevels_up);
    			}
    			else
    			{
    				/*
    				 * func returns scalar; instead of making a whole-row Var,
    				 * just reference the function's scalar output.  (XXX this
    				 * seems a tad inconsistent, especially if "f.*" was
    				 * explicitly written ...)
    				 */
    				result = makeVar(vnum,
    								 1,
    								 toid,
    								 -1,
    								 sublevels_up);
    			}
    			break;
    		case RTE_VALUES:
    			toid = RECORDOID;
    			/* returns composite; same as relation case */
    			result = makeVar(vnum,
    							 InvalidAttrNumber,
    							 toid,
    							 -1,
    							 sublevels_up);
    			break;
    		default:
    
    			/*
    			 * RTE is a join or subselect.	We represent this as a whole-row
    			 * Var of RECORD type.	(Note that in most cases the Var will be
    			 * expanded to a RowExpr during planning, but that is not our
    			 * concern here.)
    			 */
    			result = makeVar(vnum,
    							 InvalidAttrNumber,
    							 RECORDOID,
    							 -1,
    							 sublevels_up);
    			break;
    	}
    
    	/* location is not filled in by makeVar */
    	result->location = location;
    
    	/* mark relation as requiring whole-row SELECT access */
    	markVarForSelectPriv(pstate, result, rte);
    
    	return (Node *) result;
    }
    
    /*
     * Handle an explicit CAST construct.
     *
     * Transform the argument, then look up the type name and apply any necessary
     * coercion function(s).
     */
    static Node *
    transformTypeCast(ParseState *pstate, TypeCast *tc)
    {
    	Node	   *result;
    	Node	   *expr = transformExpr(pstate, tc->arg);
    	Oid			inputType = exprType(expr);
    	Oid			targetType;
    	int32		targetTypmod;
    	int			location;
    
    	targetType = typenameTypeId(pstate, tc->typeName, &targetTypmod);
    
    	if (inputType == InvalidOid)
    		return expr;			/* do nothing if NULL input */
    
    	/*
    	 * Location of the coercion is preferentially the location of the :: or
    	 * CAST symbol, but if there is none then use the location of the type
    	 * name (this can happen in TypeName 'string' syntax, for instance).
    	 */
    	location = tc->location;
    	if (location < 0)
    		location = tc->typeName->location;
    
    	result = coerce_to_target_type(pstate, expr, inputType,
    								   targetType, targetTypmod,
    								   COERCION_EXPLICIT,
    								   COERCE_EXPLICIT_CAST,
    								   location);
    	if (result == NULL)
    		ereport(ERROR,
    				(errcode(ERRCODE_CANNOT_COERCE),
    				 errmsg("cannot cast type %s to %s",
    						format_type_be(inputType),
    						format_type_be(targetType)),
    				 parser_coercion_errposition(pstate, location, expr)));
    
    	return result;
    }
    
    /*
     * Transform a "row compare-op row" construct
     *
     * The inputs are lists of already-transformed expressions.
     * As with coerce_type, pstate may be NULL if no special unknown-Param
     * processing is wanted.
     *
     * The output may be a single OpExpr, an AND or OR combination of OpExprs,
     * or a RowCompareExpr.  In all cases it is guaranteed to return boolean.
     * The AND, OR, and RowCompareExpr cases further imply things about the
     * behavior of the operators (ie, they behave as =, <>, or < <= > >=).
     */
    static Node *
    make_row_comparison_op(ParseState *pstate, List *opname,
    					   List *largs, List *rargs, int location)
    {
    	RowCompareExpr *rcexpr;
    	RowCompareType rctype;
    	List	   *opexprs;
    	List	   *opnos;
    	List	   *opfamilies;
    	ListCell   *l,
    			   *r;
    	List	  **opfamily_lists;
    	List	  **opstrat_lists;
    	Bitmapset  *strats;
    	int			nopers;
    	int			i;
    
    	nopers = list_length(largs);
    	if (nopers != list_length(rargs))
    		ereport(ERROR,
    				(errcode(ERRCODE_SYNTAX_ERROR),
    				 errmsg("unequal number of entries in row expressions"),
    				 parser_errposition(pstate, location)));
    
    	/*
    	 * We can't compare zero-length rows because there is no principled basis
    	 * for figuring out what the operator is.
    	 */
    	if (nopers == 0)
    		ereport(ERROR,
    				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    				 errmsg("cannot compare rows of zero length"),
    				 parser_errposition(pstate, location)));
    
    	/*
    	 * Identify all the pairwise operators, using make_op so that behavior is
    	 * the same as in the simple scalar case.
    	 */
    	opexprs = NIL;
    	forboth(l, largs, r, rargs)
    	{
    		Node	   *larg = (Node *) lfirst(l);
    		Node	   *rarg = (Node *) lfirst(r);
    		OpExpr	   *cmp;
    
    		cmp = (OpExpr *) make_op(pstate, opname, larg, rarg, location);
    		Assert(IsA(cmp, OpExpr));
    
    		/*
    		 * We don't use coerce_to_boolean here because we insist on the
    		 * operator yielding boolean directly, not via coercion.  If it
    		 * doesn't yield bool it won't be in any index opfamilies...
    		 */
    		if (cmp->opresulttype != BOOLOID)
    			ereport(ERROR,
    					(errcode(ERRCODE_DATATYPE_MISMATCH),
    				   errmsg("row comparison operator must yield type boolean, "
    						  "not type %s",
    						  format_type_be(cmp->opresulttype)),
    					 parser_errposition(pstate, location)));
    		if (expression_returns_set((Node *) cmp))
    			ereport(ERROR,
    					(errcode(ERRCODE_DATATYPE_MISMATCH),
    					 errmsg("row comparison operator must not return a set"),
    					 parser_errposition(pstate, location)));
    		opexprs = lappend(opexprs, cmp);
    	}
    
    	/*
    	 * If rows are length 1, just return the single operator.  In this case we
    	 * don't insist on identifying btree semantics for the operator (but we
    	 * still require it to return boolean).
    	 */
    	if (nopers == 1)
    		return (Node *) linitial(opexprs);
    
    	/*
    	 * Now we must determine which row comparison semantics (= <> < <= > >=)
    	 * apply to this set of operators.	We look for btree opfamilies
    	 * containing the operators, and see which interpretations (strategy
    	 * numbers) exist for each operator.
    	 */
    	opfamily_lists = (List **) palloc(nopers * sizeof(List *));
    	opstrat_lists = (List **) palloc(nopers * sizeof(List *));
    	strats = NULL;
    	i = 0;
    	foreach(l, opexprs)
    	{
    		Oid			opno = ((OpExpr *) lfirst(l))->opno;
    		Bitmapset  *this_strats;
    		ListCell   *j;
    
    		get_op_btree_interpretation(opno,
    									&opfamily_lists[i], &opstrat_lists[i]);
    
    		/*
    		 * convert strategy number list to a Bitmapset to make the
    		 * intersection calculation easy.
    		 */
    		this_strats = NULL;
    		foreach(j, opstrat_lists[i])
    		{
    			this_strats = bms_add_member(this_strats, lfirst_int(j));
    		}
    		if (i == 0)
    			strats = this_strats;
    		else
    			strats = bms_int_members(strats, this_strats);
    		i++;
    	}
    
    	/*
    	 * If there are multiple common interpretations, we may use any one of
    	 * them ... this coding arbitrarily picks the lowest btree strategy
    	 * number.
    	 */
    	i = bms_first_member(strats);
    	if (i < 0)
    	{
    		/* No common interpretation, so fail */
    		ereport(ERROR,
    				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    				 errmsg("could not determine interpretation of row comparison operator %s",
    						strVal(llast(opname))),
    				 errhint("Row comparison operators must be associated with btree operator families."),
    				 parser_errposition(pstate, location)));
    	}
    	rctype = (RowCompareType) i;
    
    	/*
    	 * For = and <> cases, we just combine the pairwise operators with AND or
    	 * OR respectively.
    	 *
    	 * Note: this is presently the only place where the parser generates
    	 * BoolExpr with more than two arguments.  Should be OK since the rest of
    	 * the system thinks BoolExpr is N-argument anyway.
    	 */
    	if (rctype == ROWCOMPARE_EQ)
    		return (Node *) makeBoolExpr(AND_EXPR, opexprs, location);
    	if (rctype == ROWCOMPARE_NE)
    		return (Node *) makeBoolExpr(OR_EXPR, opexprs, location);
    
    	/*
    	 * Otherwise we need to choose exactly which opfamily to associate with
    	 * each operator.
    	 */
    	opfamilies = NIL;
    	for (i = 0; i < nopers; i++)
    	{
    		Oid			opfamily = InvalidOid;
    
    		forboth(l, opfamily_lists[i], r, opstrat_lists[i])
    		{
    			int			opstrat = lfirst_int(r);
    
    			if (opstrat == rctype)
    			{
    				opfamily = lfirst_oid(l);
    				break;
    			}
    		}
    		if (OidIsValid(opfamily))
    			opfamilies = lappend_oid(opfamilies, opfamily);
    		else	/* should not happen */
    			ereport(ERROR,
    					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    					 errmsg("could not determine interpretation of row comparison operator %s",
    							strVal(llast(opname))),
    			   errdetail("There are multiple equally-plausible candidates."),
    					 parser_errposition(pstate, location)));
    	}
    
    	/*
    	 * Now deconstruct the OpExprs and create a RowCompareExpr.
    	 *
    	 * Note: can't just reuse the passed largs/rargs lists, because of
    	 * possibility that make_op inserted coercion operations.
    	 */
    	opnos = NIL;
    	largs = NIL;
    	rargs = NIL;
    	foreach(l, opexprs)
    	{
    		OpExpr	   *cmp = (OpExpr *) lfirst(l);
    
    		opnos = lappend_oid(opnos, cmp->opno);
    		largs = lappend(largs, linitial(cmp->args));
    		rargs = lappend(rargs, lsecond(cmp->args));
    	}
    
    	rcexpr = makeNode(RowCompareExpr);
    	rcexpr->rctype = rctype;
    	rcexpr->opnos = opnos;
    	rcexpr->opfamilies = opfamilies;
    	rcexpr->largs = largs;
    	rcexpr->rargs = rargs;
    
    	return (Node *) rcexpr;
    }
    
    /*
     * Transform a "row IS DISTINCT FROM row" construct
     *
     * The input RowExprs are already transformed
     */
    static Node *
    make_row_distinct_op(ParseState *pstate, List *opname,
    					 RowExpr *lrow, RowExpr *rrow,
    					 int location)
    {
    	Node	   *result = NULL;
    	List	   *largs = lrow->args;
    	List	   *rargs = rrow->args;
    	ListCell   *l,
    			   *r;
    
    	if (list_length(largs) != list_length(rargs))
    		ereport(ERROR,
    				(errcode(ERRCODE_SYNTAX_ERROR),
    				 errmsg("unequal number of entries in row expressions"),
    				 parser_errposition(pstate, location)));
    
    	forboth(l, largs, r, rargs)
    	{
    		Node	   *larg = (Node *) lfirst(l);
    		Node	   *rarg = (Node *) lfirst(r);
    		Node	   *cmp;
    
    		cmp = (Node *) make_distinct_op(pstate, opname, larg, rarg, location);
    		if (result == NULL)
    			result = cmp;
    		else
    			result = (Node *) makeBoolExpr(OR_EXPR,
    										   list_make2(result, cmp),
    										   location);
    	}
    
    	if (result == NULL)
    	{
    		/* zero-length rows?  Generate constant FALSE */
    		result = makeBoolConst(false, false);
    	}
    
    	return result;
    }
    
    /*
     * make the node for an IS DISTINCT FROM operator
     */
    static Expr *
    make_distinct_op(ParseState *pstate, List *opname, Node *ltree, Node *rtree,
    				 int location)
    {
    	Expr	   *result;
    
    	result = make_op(pstate, opname, ltree, rtree, location);
    	if (((OpExpr *) result)->opresulttype != BOOLOID)
    		ereport(ERROR,
    				(errcode(ERRCODE_DATATYPE_MISMATCH),
    			 errmsg("IS DISTINCT FROM requires = operator to yield boolean"),
    				 parser_errposition(pstate, location)));
    
    	/*
    	 * We rely on DistinctExpr and OpExpr being same struct
    	 */
    	NodeSetTag(result, T_DistinctExpr);
    
    	return result;
    }