Skip to content
Snippets Groups Projects
Select Git revision
  • 8d86a96068cfa129aaf10691cd992fffe99a43b0
  • master default
  • benchmark-tools
  • postgres-lambda
  • REL9_4_25
  • REL9_5_20
  • REL9_6_16
  • REL_10_11
  • REL_11_6
  • REL_12_1
  • REL_12_0
  • REL_12_RC1
  • REL_12_BETA4
  • REL9_4_24
  • REL9_5_19
  • REL9_6_15
  • REL_10_10
  • REL_11_5
  • REL_12_BETA3
  • REL9_4_23
  • REL9_5_18
  • REL9_6_14
  • REL_10_9
  • REL_11_4
24 results

xlog.c

Blame
  • xlog.c 99.38 KiB
    /*-------------------------------------------------------------------------
     *
     * xlog.c
     *		PostgreSQL transaction log manager
     *
     *
     * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
     * Portions Copyright (c) 1994, Regents of the University of California
     *
     * $Header: /cvsroot/pgsql/src/backend/access/transam/xlog.c,v 1.115 2003/05/10 18:01:31 tgl Exp $
     *
     *-------------------------------------------------------------------------
     */
    
    #include "postgres.h"
    
    #include <fcntl.h>
    #include <signal.h>
    #include <unistd.h>
    #include <errno.h>
    #include <sys/stat.h>
    #include <sys/time.h>
    #include <dirent.h>
    
    #include "access/clog.h"
    #include "access/transam.h"
    #include "access/xact.h"
    #include "access/xlog.h"
    #include "access/xlogutils.h"
    #include "catalog/catversion.h"
    #include "catalog/pg_control.h"
    #include "storage/bufpage.h"
    #include "storage/lwlock.h"
    #include "storage/pmsignal.h"
    #include "storage/proc.h"
    #include "storage/sinval.h"
    #include "storage/spin.h"
    #include "utils/builtins.h"
    #include "utils/guc.h"
    #include "utils/relcache.h"
    #include "miscadmin.h"
    
    
    /*
     * This chunk of hackery attempts to determine which file sync methods
     * are available on the current platform, and to choose an appropriate
     * default method.	We assume that fsync() is always available, and that
     * configure determined whether fdatasync() is.
     */
    #define SYNC_METHOD_FSYNC		0
    #define SYNC_METHOD_FDATASYNC	1
    #define SYNC_METHOD_OPEN		2		/* used for both O_SYNC and
    										 * O_DSYNC */
    
    #if defined(O_SYNC)
    #define OPEN_SYNC_FLAG	   O_SYNC
    #else
    #if defined(O_FSYNC)
    #define OPEN_SYNC_FLAG	  O_FSYNC
    #endif
    #endif
    
    #if defined(OPEN_SYNC_FLAG)
    #if defined(O_DSYNC) && (O_DSYNC != OPEN_SYNC_FLAG)
    #define OPEN_DATASYNC_FLAG	  O_DSYNC
    #endif
    #endif
    
    #if defined(OPEN_DATASYNC_FLAG)
    #define DEFAULT_SYNC_METHOD_STR    "open_datasync"
    #define DEFAULT_SYNC_METHOD		   SYNC_METHOD_OPEN
    #define DEFAULT_SYNC_FLAGBIT	   OPEN_DATASYNC_FLAG
    #else
    #if defined(HAVE_FDATASYNC)
    #define DEFAULT_SYNC_METHOD_STR   "fdatasync"
    #define DEFAULT_SYNC_METHOD		  SYNC_METHOD_FDATASYNC
    #define DEFAULT_SYNC_FLAGBIT	  0
    #else
    #define DEFAULT_SYNC_METHOD_STR   "fsync"
    #define DEFAULT_SYNC_METHOD		  SYNC_METHOD_FSYNC
    #define DEFAULT_SYNC_FLAGBIT	  0
    #endif
    #endif
    
    
    /* User-settable parameters */
    int			CheckPointSegments = 3;
    int			XLOGbuffers = 8;
    int			XLOG_DEBUG = 0;
    char	   *XLOG_sync_method = NULL;
    const char	XLOG_sync_method_default[] = DEFAULT_SYNC_METHOD_STR;
    char		XLOG_archive_dir[MAXPGPATH];		/* null string means
    												 * delete 'em */
    
    /*
     * XLOGfileslop is used in the code as the allowed "fuzz" in the number of
     * preallocated XLOG segments --- we try to have at least XLOGfiles advance
     * segments but no more than XLOGfileslop segments.  This could
     * be made a separate GUC variable, but at present I think it's sufficient
     * to hardwire it as 2*CheckPointSegments+1.  Under normal conditions, a
     * checkpoint will free no more than 2*CheckPointSegments log segments, and
     * we want to recycle all of them; the +1 allows boundary cases to happen
     * without wasting a delete/create-segment cycle.
     */
    
    #define XLOGfileslop	(2*CheckPointSegments + 1)
    
    
    /* these are derived from XLOG_sync_method by assign_xlog_sync_method */
    static int	sync_method = DEFAULT_SYNC_METHOD;
    static int	open_sync_bit = DEFAULT_SYNC_FLAGBIT;
    
    #define XLOG_SYNC_BIT  (enableFsync ? open_sync_bit : 0)
    
    #define MinXLOGbuffers	4
    
    
    /*
     * ThisStartUpID will be same in all backends --- it identifies current
     * instance of the database system.
     */
    StartUpID	ThisStartUpID = 0;
    
    /* Are we doing recovery by reading XLOG? */
    bool		InRecovery = false;
    
    /*
     * MyLastRecPtr points to the start of the last XLOG record inserted by the
     * current transaction.  If MyLastRecPtr.xrecoff == 0, then the current
     * xact hasn't yet inserted any transaction-controlled XLOG records.
     *
     * Note that XLOG records inserted outside transaction control are not
     * reflected into MyLastRecPtr.  They do, however, cause MyXactMadeXLogEntry
     * to be set true.	The latter can be used to test whether the current xact
     * made any loggable changes (including out-of-xact changes, such as
     * sequence updates).
     *
     * When we insert/update/delete a tuple in a temporary relation, we do not
     * make any XLOG record, since we don't care about recovering the state of
     * the temp rel after a crash.	However, we will still need to remember
     * whether our transaction committed or aborted in that case.  So, we must
     * set MyXactMadeTempRelUpdate true to indicate that the XID will be of
     * interest later.
     */
    XLogRecPtr	MyLastRecPtr = {0, 0};
    
    bool		MyXactMadeXLogEntry = false;
    
    bool		MyXactMadeTempRelUpdate = false;
    
    /*
     * ProcLastRecPtr points to the start of the last XLOG record inserted by the
     * current backend.  It is updated for all inserts, transaction-controlled
     * or not.	ProcLastRecEnd is similar but points to end+1 of last record.
     */
    static XLogRecPtr ProcLastRecPtr = {0, 0};
    
    XLogRecPtr	ProcLastRecEnd = {0, 0};
    
    /*
     * RedoRecPtr is this backend's local copy of the REDO record pointer
     * (which is almost but not quite the same as a pointer to the most recent
     * CHECKPOINT record).	We update this from the shared-memory copy,
     * XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we
     * hold the Insert lock).  See XLogInsert for details.	We are also allowed
     * to update from XLogCtl->Insert.RedoRecPtr if we hold the info_lck;
     * see GetRedoRecPtr.
     */
    static XLogRecPtr RedoRecPtr;
    
    /*----------
     * Shared-memory data structures for XLOG control
     *
     * LogwrtRqst indicates a byte position that we need to write and/or fsync
     * the log up to (all records before that point must be written or fsynced).
     * LogwrtResult indicates the byte positions we have already written/fsynced.
     * These structs are identical but are declared separately to indicate their
     * slightly different functions.
     *
     * We do a lot of pushups to minimize the amount of access to lockable
     * shared memory values.  There are actually three shared-memory copies of
     * LogwrtResult, plus one unshared copy in each backend.  Here's how it works:
     *		XLogCtl->LogwrtResult is protected by info_lck
     *		XLogCtl->Write.LogwrtResult is protected by WALWriteLock
     *		XLogCtl->Insert.LogwrtResult is protected by WALInsertLock
     * One must hold the associated lock to read or write any of these, but
     * of course no lock is needed to read/write the unshared LogwrtResult.
     *
     * XLogCtl->LogwrtResult and XLogCtl->Write.LogwrtResult are both "always
     * right", since both are updated by a write or flush operation before
     * it releases WALWriteLock.  The point of keeping XLogCtl->Write.LogwrtResult
     * is that it can be examined/modified by code that already holds WALWriteLock
     * without needing to grab info_lck as well.
     *
     * XLogCtl->Insert.LogwrtResult may lag behind the reality of the other two,
     * but is updated when convenient.	Again, it exists for the convenience of
     * code that is already holding WALInsertLock but not the other locks.
     *
     * The unshared LogwrtResult may lag behind any or all of these, and again
     * is updated when convenient.
     *
     * The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst
     * (protected by info_lck), but we don't need to cache any copies of it.
     *
     * Note that this all works because the request and result positions can only
     * advance forward, never back up, and so we can easily determine which of two
     * values is "more up to date".
     *
     * info_lck is only held long enough to read/update the protected variables,
     * so it's a plain spinlock.  The other locks are held longer (potentially
     * over I/O operations), so we use LWLocks for them.  These locks are:
     *
     * WALInsertLock: must be held to insert a record into the WAL buffers.
     *
     * WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or
     * XLogFlush).
     *
     * ControlFileLock: must be held to read/update control file or create
     * new log file.
     *
     * CheckpointLock: must be held to do a checkpoint (ensures only one
     * checkpointer at a time; even though the postmaster won't launch
     * parallel checkpoint processes, we need this because manual checkpoints
     * could be launched simultaneously).
     *
     *----------
     */
    typedef struct XLogwrtRqst
    {
    	XLogRecPtr	Write;			/* last byte + 1 to write out */
    	XLogRecPtr	Flush;			/* last byte + 1 to flush */
    } XLogwrtRqst;
    
    typedef struct XLogwrtResult
    {
    	XLogRecPtr	Write;			/* last byte + 1 written out */
    	XLogRecPtr	Flush;			/* last byte + 1 flushed */
    } XLogwrtResult;
    
    /*
     * Shared state data for XLogInsert.
     */
    typedef struct XLogCtlInsert
    {
    	XLogwrtResult LogwrtResult; /* a recent value of LogwrtResult */
    	XLogRecPtr	PrevRecord;		/* start of previously-inserted record */
    	uint16		curridx;		/* current block index in cache */
    	XLogPageHeader currpage;	/* points to header of block in cache */
    	char	   *currpos;		/* current insertion point in cache */
    	XLogRecPtr	RedoRecPtr;		/* current redo point for insertions */
    } XLogCtlInsert;
    
    /*
     * Shared state data for XLogWrite/XLogFlush.
     */
    typedef struct XLogCtlWrite
    {
    	XLogwrtResult LogwrtResult; /* current value of LogwrtResult */
    	uint16		curridx;		/* cache index of next block to write */
    } XLogCtlWrite;
    
    /*
     * Total shared-memory state for XLOG.
     */
    typedef struct XLogCtlData
    {
    	/* Protected by WALInsertLock: */
    	XLogCtlInsert Insert;
    	/* Protected by info_lck: */
    	XLogwrtRqst LogwrtRqst;
    	XLogwrtResult LogwrtResult;
    	/* Protected by WALWriteLock: */
    	XLogCtlWrite Write;
    
    	/*
    	 * These values do not change after startup, although the pointed-to
    	 * pages and xlblocks values certainly do.	Permission to read/write
    	 * the pages and xlblocks values depends on WALInsertLock and
    	 * WALWriteLock.
    	 */
    	char	   *pages;			/* buffers for unwritten XLOG pages */
    	XLogRecPtr *xlblocks;		/* 1st byte ptr-s + BLCKSZ */
    	uint32		XLogCacheByte;	/* # bytes in xlog buffers */
    	uint32		XLogCacheBlck;	/* highest allocated xlog buffer index */
    	StartUpID	ThisStartUpID;
    
    	/* This value is not protected by *any* lock... */
    	/* see SetSavedRedoRecPtr/GetSavedRedoRecPtr */
    	XLogRecPtr	SavedRedoRecPtr;
    
    	slock_t		info_lck;		/* locks shared LogwrtRqst/LogwrtResult */
    } XLogCtlData;
    
    static XLogCtlData *XLogCtl = NULL;
    
    /*
     * We maintain an image of pg_control in shared memory.
     */
    static ControlFileData *ControlFile = NULL;
    
    /*
     * Macros for managing XLogInsert state.  In most cases, the calling routine
     * has local copies of XLogCtl->Insert and/or XLogCtl->Insert->curridx,
     * so these are passed as parameters instead of being fetched via XLogCtl.
     */
    
    /* Free space remaining in the current xlog page buffer */
    #define INSERT_FREESPACE(Insert)  \
    	(BLCKSZ - ((Insert)->currpos - (char *) (Insert)->currpage))
    
    /* Construct XLogRecPtr value for current insertion point */
    #define INSERT_RECPTR(recptr,Insert,curridx)  \
    	( \
    	  (recptr).xlogid = XLogCtl->xlblocks[curridx].xlogid, \
    	  (recptr).xrecoff = \
    		XLogCtl->xlblocks[curridx].xrecoff - INSERT_FREESPACE(Insert) \
    	)
    
    
    /* Increment an xlogid/segment pair */
    #define NextLogSeg(logId, logSeg)	\
    	do { \
    		if ((logSeg) >= XLogSegsPerFile-1) \
    		{ \
    			(logId)++; \
    			(logSeg) = 0; \
    		} \
    		else \
    			(logSeg)++; \
    	} while (0)
    
    /* Decrement an xlogid/segment pair (assume it's not 0,0) */
    #define PrevLogSeg(logId, logSeg)	\
    	do { \
    		if (logSeg) \
    			(logSeg)--; \
    		else \
    		{ \
    			(logId)--; \
    			(logSeg) = XLogSegsPerFile-1; \
    		} \
    	} while (0)
    
    /*
     * Compute ID and segment from an XLogRecPtr.
     *
     * For XLByteToSeg, do the computation at face value.  For XLByteToPrevSeg,
     * a boundary byte is taken to be in the previous segment.	This is suitable
     * for deciding which segment to write given a pointer to a record end,
     * for example.
     */
    #define XLByteToSeg(xlrp, logId, logSeg)	\
    	( logId = (xlrp).xlogid, \
    	  logSeg = (xlrp).xrecoff / XLogSegSize \
    	)
    #define XLByteToPrevSeg(xlrp, logId, logSeg)	\
    	( logId = (xlrp).xlogid, \
    	  logSeg = ((xlrp).xrecoff - 1) / XLogSegSize \
    	)
    
    /*
     * Is an XLogRecPtr within a particular XLOG segment?
     *
     * For XLByteInSeg, do the computation at face value.  For XLByteInPrevSeg,
     * a boundary byte is taken to be in the previous segment.
     */
    #define XLByteInSeg(xlrp, logId, logSeg)	\
    	((xlrp).xlogid == (logId) && \
    	 (xlrp).xrecoff / XLogSegSize == (logSeg))
    
    #define XLByteInPrevSeg(xlrp, logId, logSeg)	\
    	((xlrp).xlogid == (logId) && \
    	 ((xlrp).xrecoff - 1) / XLogSegSize == (logSeg))
    
    
    #define XLogFileName(path, log, seg)	\
    			snprintf(path, MAXPGPATH, "%s/%08X%08X",	\
    					 XLogDir, log, seg)
    
    #define PrevBufIdx(idx)		\
    		(((idx) == 0) ? XLogCtl->XLogCacheBlck : ((idx) - 1))
    
    #define NextBufIdx(idx)		\
    		(((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1))
    
    #define XRecOffIsValid(xrecoff) \
    		((xrecoff) % BLCKSZ >= SizeOfXLogPHD && \
    		(BLCKSZ - (xrecoff) % BLCKSZ) >= SizeOfXLogRecord)
    
    /*
     * _INTL_MAXLOGRECSZ: max space needed for a record including header and
     * any backup-block data.
     */
    #define _INTL_MAXLOGRECSZ	(SizeOfXLogRecord + MAXLOGRECSZ + \
    							 XLR_MAX_BKP_BLOCKS * (sizeof(BkpBlock) + BLCKSZ))
    
    
    /* File path names */
    static char XLogDir[MAXPGPATH];
    static char ControlFilePath[MAXPGPATH];
    
    /*
     * Private, possibly out-of-date copy of shared LogwrtResult.
     * See discussion above.
     */
    static XLogwrtResult LogwrtResult = {{0, 0}, {0, 0}};
    
    /*
     * openLogFile is -1 or a kernel FD for an open log file segment.
     * When it's open, openLogOff is the current seek offset in the file.
     * openLogId/openLogSeg identify the segment.  These variables are only
     * used to write the XLOG, and so will normally refer to the active segment.
     */
    static int	openLogFile = -1;
    static uint32 openLogId = 0;
    static uint32 openLogSeg = 0;
    static uint32 openLogOff = 0;
    
    /*
     * These variables are used similarly to the ones above, but for reading
     * the XLOG.  Note, however, that readOff generally represents the offset
     * of the page just read, not the seek position of the FD itself, which
     * will be just past that page.
     */
    static int	readFile = -1;
    static uint32 readId = 0;
    static uint32 readSeg = 0;
    static uint32 readOff = 0;
    
    /* Buffer for currently read page (BLCKSZ bytes) */
    static char *readBuf = NULL;
    
    /* State information for XLOG reading */
    static XLogRecPtr ReadRecPtr;
    static XLogRecPtr EndRecPtr;
    static XLogRecord *nextRecord = NULL;
    static StartUpID lastReadSUI;
    
    static bool InRedo = false;
    
    
    static bool AdvanceXLInsertBuffer(void);
    static void XLogWrite(XLogwrtRqst WriteRqst);
    static int XLogFileInit(uint32 log, uint32 seg,
    			 bool *use_existent, bool use_lock);
    static bool InstallXLogFileSegment(uint32 log, uint32 seg, char *tmppath,
    					   bool find_free, int max_advance,
    					   bool use_lock);
    static int	XLogFileOpen(uint32 log, uint32 seg, bool econt);
    static void PreallocXlogFiles(XLogRecPtr endptr);
    static void MoveOfflineLogs(uint32 log, uint32 seg, XLogRecPtr endptr);
    static XLogRecord *ReadRecord(XLogRecPtr *RecPtr, int emode, char *buffer);
    static bool ValidXLOGHeader(XLogPageHeader hdr, int emode, bool checkSUI);
    static XLogRecord *ReadCheckpointRecord(XLogRecPtr RecPtr,
    					 int whichChkpt,
    					 char *buffer);
    static void WriteControlFile(void);
    static void ReadControlFile(void);
    static char *str_time(time_t tnow);
    static void xlog_outrec(char *buf, XLogRecord *record);
    static void issue_xlog_fsync(void);
    
    
    /*
     * Insert an XLOG record having the specified RMID and info bytes,
     * with the body of the record being the data chunk(s) described by
     * the rdata list (see xlog.h for notes about rdata).
     *
     * Returns XLOG pointer to end of record (beginning of next record).
     * This can be used as LSN for data pages affected by the logged action.
     * (LSN is the XLOG point up to which the XLOG must be flushed to disk
     * before the data page can be written out.  This implements the basic
     * WAL rule "write the log before the data".)
     *
     * NB: this routine feels free to scribble on the XLogRecData structs,
     * though not on the data they reference.  This is OK since the XLogRecData
     * structs are always just temporaries in the calling code.
     */
    XLogRecPtr
    XLogInsert(RmgrId rmid, uint8 info, XLogRecData *rdata)
    {
    	XLogCtlInsert *Insert = &XLogCtl->Insert;
    	XLogRecord *record;
    	XLogContRecord *contrecord;
    	XLogRecPtr	RecPtr;
    	XLogRecPtr	WriteRqst;
    	uint32		freespace;
    	uint16		curridx;
    	XLogRecData *rdt;
    	Buffer		dtbuf[XLR_MAX_BKP_BLOCKS];
    	bool		dtbuf_bkp[XLR_MAX_BKP_BLOCKS];
    	BkpBlock	dtbuf_xlg[XLR_MAX_BKP_BLOCKS];
    	XLogRecPtr	dtbuf_lsn[XLR_MAX_BKP_BLOCKS];
    	XLogRecData dtbuf_rdt[2 * XLR_MAX_BKP_BLOCKS];
    	crc64		rdata_crc;
    	uint32		len,
    				write_len;
    	unsigned	i;
    	XLogwrtRqst LogwrtRqst;
    	bool		updrqst;
    	bool		no_tran = (rmid == RM_XLOG_ID) ? true : false;
    
    	if (info & XLR_INFO_MASK)
    	{
    		if ((info & XLR_INFO_MASK) != XLOG_NO_TRAN)
    			elog(PANIC, "XLogInsert: invalid info mask %02X",
    				 (info & XLR_INFO_MASK));
    		no_tran = true;
    		info &= ~XLR_INFO_MASK;
    	}
    
    	/*
    	 * In bootstrap mode, we don't actually log anything but XLOG
    	 * resources; return a phony record pointer.
    	 */
    	if (IsBootstrapProcessingMode() && rmid != RM_XLOG_ID)
    	{
    		RecPtr.xlogid = 0;
    		RecPtr.xrecoff = SizeOfXLogPHD; /* start of 1st checkpoint record */
    		return (RecPtr);
    	}
    
    	/*
    	 * Here we scan the rdata list, determine which buffers must be backed
    	 * up, and compute the CRC values for the data.  Note that the record
    	 * header isn't added into the CRC yet since we don't know the final
    	 * length or info bits quite yet.
    	 *
    	 * We may have to loop back to here if a race condition is detected
    	 * below. We could prevent the race by doing all this work while
    	 * holding the insert lock, but it seems better to avoid doing CRC
    	 * calculations while holding the lock.  This means we have to be
    	 * careful about modifying the rdata list until we know we aren't
    	 * going to loop back again.  The only change we allow ourselves to
    	 * make earlier is to set rdt->data = NULL in list items we have
    	 * decided we will have to back up the whole buffer for.  This is OK
    	 * because we will certainly decide the same thing again for those
    	 * items if we do it over; doing it here saves an extra pass over the
    	 * list later.
    	 */
    begin:;
    	for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
    	{
    		dtbuf[i] = InvalidBuffer;
    		dtbuf_bkp[i] = false;
    	}
    
    	INIT_CRC64(rdata_crc);
    	len = 0;
    	for (rdt = rdata;;)
    	{
    		if (rdt->buffer == InvalidBuffer)
    		{
    			/* Simple data, just include it */
    			len += rdt->len;
    			COMP_CRC64(rdata_crc, rdt->data, rdt->len);
    		}
    		else
    		{
    			/* Find info for buffer */
    			for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
    			{
    				if (rdt->buffer == dtbuf[i])
    				{
    					/* Buffer already referenced by earlier list item */
    					if (dtbuf_bkp[i])
    						rdt->data = NULL;
    					else if (rdt->data)
    					{
    						len += rdt->len;
    						COMP_CRC64(rdata_crc, rdt->data, rdt->len);
    					}
    					break;
    				}
    				if (dtbuf[i] == InvalidBuffer)
    				{
    					/* OK, put it in this slot */
    					dtbuf[i] = rdt->buffer;
    
    					/*
    					 * XXX We assume page LSN is first data on page
    					 */
    					dtbuf_lsn[i] = *((XLogRecPtr *) BufferGetBlock(rdt->buffer));
    					if (XLByteLE(dtbuf_lsn[i], RedoRecPtr))
    					{
    						crc64		dtcrc;
    
    						dtbuf_bkp[i] = true;
    						rdt->data = NULL;
    						INIT_CRC64(dtcrc);
    						COMP_CRC64(dtcrc,
    								   BufferGetBlock(dtbuf[i]),
    								   BLCKSZ);
    						dtbuf_xlg[i].node = BufferGetFileNode(dtbuf[i]);
    						dtbuf_xlg[i].block = BufferGetBlockNumber(dtbuf[i]);
    						COMP_CRC64(dtcrc,
    								(char *) &(dtbuf_xlg[i]) + sizeof(crc64),
    								   sizeof(BkpBlock) - sizeof(crc64));
    						FIN_CRC64(dtcrc);
    						dtbuf_xlg[i].crc = dtcrc;
    					}
    					else if (rdt->data)
    					{
    						len += rdt->len;
    						COMP_CRC64(rdata_crc, rdt->data, rdt->len);
    					}
    					break;
    				}
    			}
    			if (i >= XLR_MAX_BKP_BLOCKS)
    				elog(PANIC, "XLogInsert: can backup %d blocks at most",
    					 XLR_MAX_BKP_BLOCKS);
    		}
    		/* Break out of loop when rdt points to last list item */
    		if (rdt->next == NULL)
    			break;
    		rdt = rdt->next;
    	}
    
    	/*
    	 * NOTE: the test for len == 0 here is somewhat fishy, since in theory
    	 * all of the rmgr data might have been suppressed in favor of backup
    	 * blocks.	Currently, all callers of XLogInsert provide at least some
    	 * not-in-a-buffer data and so len == 0 should never happen, but that
    	 * may not be true forever.  If you need to remove the len == 0 check,
    	 * also remove the check for xl_len == 0 in ReadRecord, below.
    	 */
    	if (len == 0 || len > MAXLOGRECSZ)
    		elog(PANIC, "XLogInsert: invalid record length %u", len);
    
    	START_CRIT_SECTION();
    
    	/* update LogwrtResult before doing cache fill check */
    	{
    		/* use volatile pointer to prevent code rearrangement */
    		volatile XLogCtlData *xlogctl = XLogCtl;
    
    		SpinLockAcquire_NoHoldoff(&xlogctl->info_lck);
    		LogwrtRqst = xlogctl->LogwrtRqst;
    		LogwrtResult = xlogctl->LogwrtResult;
    		SpinLockRelease_NoHoldoff(&xlogctl->info_lck);
    	}
    
    	/*
    	 * If cache is half filled then try to acquire write lock and do
    	 * XLogWrite. Ignore any fractional blocks in performing this check.
    	 */
    	LogwrtRqst.Write.xrecoff -= LogwrtRqst.Write.xrecoff % BLCKSZ;
    	if (LogwrtRqst.Write.xlogid != LogwrtResult.Write.xlogid ||
    		(LogwrtRqst.Write.xrecoff >= LogwrtResult.Write.xrecoff +
    		 XLogCtl->XLogCacheByte / 2))
    	{
    		if (LWLockConditionalAcquire(WALWriteLock, LW_EXCLUSIVE))
    		{
    			LogwrtResult = XLogCtl->Write.LogwrtResult;
    			if (XLByteLT(LogwrtResult.Write, LogwrtRqst.Write))
    				XLogWrite(LogwrtRqst);
    			LWLockRelease(WALWriteLock);
    		}
    	}
    
    	/* Now wait to get insert lock */
    	LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
    
    	/*
    	 * Check to see if my RedoRecPtr is out of date.  If so, may have to
    	 * go back and recompute everything.  This can only happen just after
    	 * a checkpoint, so it's better to be slow in this case and fast
    	 * otherwise.
    	 */
    	if (!XLByteEQ(RedoRecPtr, Insert->RedoRecPtr))
    	{
    		Assert(XLByteLT(RedoRecPtr, Insert->RedoRecPtr));
    		RedoRecPtr = Insert->RedoRecPtr;
    
    		for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
    		{
    			if (dtbuf[i] == InvalidBuffer)
    				continue;
    			if (dtbuf_bkp[i] == false &&
    				XLByteLE(dtbuf_lsn[i], RedoRecPtr))
    			{
    				/*
    				 * Oops, this buffer now needs to be backed up, but we
    				 * didn't think so above.  Start over.
    				 */
    				LWLockRelease(WALInsertLock);
    				END_CRIT_SECTION();
    				goto begin;
    			}
    		}
    	}
    
    	/*
    	 * Make additional rdata list entries for the backup blocks, so that
    	 * we don't need to special-case them in the write loop.  Note that we
    	 * have now irrevocably changed the input rdata list.  At the exit of
    	 * this loop, write_len includes the backup block data.
    	 *
    	 * Also set the appropriate info bits to show which buffers were backed
    	 * up.	The i'th XLR_SET_BKP_BLOCK bit corresponds to the i'th
    	 * distinct buffer value (ignoring InvalidBuffer) appearing in the
    	 * rdata list.
    	 */
    	write_len = len;
    	for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
    	{
    		if (dtbuf[i] == InvalidBuffer || !(dtbuf_bkp[i]))
    			continue;
    
    		info |= XLR_SET_BKP_BLOCK(i);
    
    		rdt->next = &(dtbuf_rdt[2 * i]);
    
    		dtbuf_rdt[2 * i].data = (char *) &(dtbuf_xlg[i]);
    		dtbuf_rdt[2 * i].len = sizeof(BkpBlock);
    		write_len += sizeof(BkpBlock);
    
    		rdt = dtbuf_rdt[2 * i].next = &(dtbuf_rdt[2 * i + 1]);
    
    		dtbuf_rdt[2 * i + 1].data = (char *) BufferGetBlock(dtbuf[i]);
    		dtbuf_rdt[2 * i + 1].len = BLCKSZ;
    		write_len += BLCKSZ;
    		dtbuf_rdt[2 * i + 1].next = NULL;
    	}
    
    	/* Insert record header */
    
    	updrqst = false;
    	freespace = INSERT_FREESPACE(Insert);
    	if (freespace < SizeOfXLogRecord)
    	{
    		updrqst = AdvanceXLInsertBuffer();
    		freespace = BLCKSZ - SizeOfXLogPHD;
    	}
    
    	curridx = Insert->curridx;
    	record = (XLogRecord *) Insert->currpos;
    
    	record->xl_prev = Insert->PrevRecord;
    	if (no_tran)
    	{
    		record->xl_xact_prev.xlogid = 0;
    		record->xl_xact_prev.xrecoff = 0;
    	}
    	else
    		record->xl_xact_prev = MyLastRecPtr;
    
    	record->xl_xid = GetCurrentTransactionId();
    	record->xl_len = len;		/* doesn't include backup blocks */
    	record->xl_info = info;
    	record->xl_rmid = rmid;
    
    	/* Now we can finish computing the main CRC */
    	COMP_CRC64(rdata_crc, (char *) record + sizeof(crc64),
    			   SizeOfXLogRecord - sizeof(crc64));
    	FIN_CRC64(rdata_crc);
    	record->xl_crc = rdata_crc;
    
    	/* Compute record's XLOG location */
    	INSERT_RECPTR(RecPtr, Insert, curridx);
    
    	/* If first XLOG record of transaction, save it in PGPROC array */
    	if (MyLastRecPtr.xrecoff == 0 && !no_tran)
    	{
    		/*
    		 * We do not acquire SInvalLock here because of possible deadlock.
    		 * Anyone who wants to inspect other procs' logRec must acquire
    		 * WALInsertLock, instead.	A better solution would be a per-PROC
    		 * spinlock, but no time for that before 7.2 --- tgl 12/19/01.
    		 */
    		MyProc->logRec = RecPtr;
    	}
    
    	if (XLOG_DEBUG)
    	{
    		char		buf[8192];
    
    		sprintf(buf, "INSERT @ %X/%X: ", RecPtr.xlogid, RecPtr.xrecoff);
    		xlog_outrec(buf, record);
    		if (rdata->data != NULL)
    		{
    			strcat(buf, " - ");
    			RmgrTable[record->xl_rmid].rm_desc(buf, record->xl_info, rdata->data);
    		}
    		elog(LOG, "%s", buf);
    	}
    
    	/* Record begin of record in appropriate places */
    	if (!no_tran)
    		MyLastRecPtr = RecPtr;
    	ProcLastRecPtr = RecPtr;
    	Insert->PrevRecord = RecPtr;
    	MyXactMadeXLogEntry = true;
    
    	Insert->currpos += SizeOfXLogRecord;
    	freespace -= SizeOfXLogRecord;
    
    	/*
    	 * Append the data, including backup blocks if any
    	 */
    	while (write_len)
    	{
    		while (rdata->data == NULL)
    			rdata = rdata->next;
    
    		if (freespace > 0)
    		{
    			if (rdata->len > freespace)
    			{
    				memcpy(Insert->currpos, rdata->data, freespace);
    				rdata->data += freespace;
    				rdata->len -= freespace;
    				write_len -= freespace;
    			}
    			else
    			{
    				memcpy(Insert->currpos, rdata->data, rdata->len);
    				freespace -= rdata->len;
    				write_len -= rdata->len;
    				Insert->currpos += rdata->len;
    				rdata = rdata->next;
    				continue;
    			}
    		}
    
    		/* Use next buffer */
    		updrqst = AdvanceXLInsertBuffer();
    		curridx = Insert->curridx;
    		/* Insert cont-record header */
    		Insert->currpage->xlp_info |= XLP_FIRST_IS_CONTRECORD;
    		contrecord = (XLogContRecord *) Insert->currpos;
    		contrecord->xl_rem_len = write_len;
    		Insert->currpos += SizeOfXLogContRecord;
    		freespace = BLCKSZ - SizeOfXLogPHD - SizeOfXLogContRecord;
    	}
    
    	/* Ensure next record will be properly aligned */
    	Insert->currpos = (char *) Insert->currpage +
    		MAXALIGN(Insert->currpos - (char *) Insert->currpage);
    	freespace = INSERT_FREESPACE(Insert);
    
    	/*
    	 * The recptr I return is the beginning of the *next* record. This
    	 * will be stored as LSN for changed data pages...
    	 */
    	INSERT_RECPTR(RecPtr, Insert, curridx);
    
    	/* Need to update shared LogwrtRqst if some block was filled up */
    	if (freespace < SizeOfXLogRecord)
    		updrqst = true;			/* curridx is filled and available for
    								 * writing out */
    	else
    		curridx = PrevBufIdx(curridx);
    	WriteRqst = XLogCtl->xlblocks[curridx];
    
    	LWLockRelease(WALInsertLock);
    
    	if (updrqst)
    	{
    		/* use volatile pointer to prevent code rearrangement */
    		volatile XLogCtlData *xlogctl = XLogCtl;
    
    		SpinLockAcquire_NoHoldoff(&xlogctl->info_lck);
    		/* advance global request to include new block(s) */
    		if (XLByteLT(xlogctl->LogwrtRqst.Write, WriteRqst))
    			xlogctl->LogwrtRqst.Write = WriteRqst;
    		/* update local result copy while I have the chance */
    		LogwrtResult = xlogctl->LogwrtResult;
    		SpinLockRelease_NoHoldoff(&xlogctl->info_lck);
    	}
    
    	ProcLastRecEnd = RecPtr;
    
    	END_CRIT_SECTION();
    
    	return (RecPtr);
    }
    
    /*
     * Advance the Insert state to the next buffer page, writing out the next
     * buffer if it still contains unwritten data.
     *
     * The global LogwrtRqst.Write pointer needs to be advanced to include the
     * just-filled page.  If we can do this for free (without an extra lock),
     * we do so here.  Otherwise the caller must do it.  We return TRUE if the
     * request update still needs to be done, FALSE if we did it internally.
     *
     * Must be called with WALInsertLock held.
     */
    static bool
    AdvanceXLInsertBuffer(void)
    {
    	XLogCtlInsert *Insert = &XLogCtl->Insert;
    	XLogCtlWrite *Write = &XLogCtl->Write;
    	uint16		nextidx = NextBufIdx(Insert->curridx);
    	bool		update_needed = true;
    	XLogRecPtr	OldPageRqstPtr;
    	XLogwrtRqst WriteRqst;
    	XLogRecPtr	NewPageEndPtr;
    	XLogPageHeader NewPage;
    
    	/* Use Insert->LogwrtResult copy if it's more fresh */
    	if (XLByteLT(LogwrtResult.Write, Insert->LogwrtResult.Write))
    		LogwrtResult = Insert->LogwrtResult;
    
    	/*
    	 * Get ending-offset of the buffer page we need to replace (this may
    	 * be zero if the buffer hasn't been used yet).  Fall through if it's
    	 * already written out.
    	 */
    	OldPageRqstPtr = XLogCtl->xlblocks[nextidx];
    	if (!XLByteLE(OldPageRqstPtr, LogwrtResult.Write))
    	{
    		/* nope, got work to do... */
    		XLogRecPtr	FinishedPageRqstPtr;
    
    		FinishedPageRqstPtr = XLogCtl->xlblocks[Insert->curridx];
    
    		/* Before waiting, get info_lck and update LogwrtResult */
    		{
    			/* use volatile pointer to prevent code rearrangement */
    			volatile XLogCtlData *xlogctl = XLogCtl;
    
    			SpinLockAcquire_NoHoldoff(&xlogctl->info_lck);
    			if (XLByteLT(xlogctl->LogwrtRqst.Write, FinishedPageRqstPtr))
    				xlogctl->LogwrtRqst.Write = FinishedPageRqstPtr;
    			LogwrtResult = xlogctl->LogwrtResult;
    			SpinLockRelease_NoHoldoff(&xlogctl->info_lck);
    		}
    
    		update_needed = false;	/* Did the shared-request update */
    
    		if (XLByteLE(OldPageRqstPtr, LogwrtResult.Write))
    		{
    			/* OK, someone wrote it already */
    			Insert->LogwrtResult = LogwrtResult;
    		}
    		else
    		{
    			/* Must acquire write lock */
    			LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
    			LogwrtResult = Write->LogwrtResult;
    			if (XLByteLE(OldPageRqstPtr, LogwrtResult.Write))
    			{
    				/* OK, someone wrote it already */
    				LWLockRelease(WALWriteLock);
    				Insert->LogwrtResult = LogwrtResult;
    			}
    			else
    			{
    				/*
    				 * Have to write buffers while holding insert lock. This
    				 * is not good, so only write as much as we absolutely
    				 * must.
    				 */
    				WriteRqst.Write = OldPageRqstPtr;
    				WriteRqst.Flush.xlogid = 0;
    				WriteRqst.Flush.xrecoff = 0;
    				XLogWrite(WriteRqst);
    				LWLockRelease(WALWriteLock);
    				Insert->LogwrtResult = LogwrtResult;
    			}
    		}
    	}
    
    	/*
    	 * Now the next buffer slot is free and we can set it up to be the
    	 * next output page.
    	 */
    	NewPageEndPtr = XLogCtl->xlblocks[Insert->curridx];
    	if (NewPageEndPtr.xrecoff >= XLogFileSize)
    	{
    		/* crossing a logid boundary */
    		NewPageEndPtr.xlogid += 1;
    		NewPageEndPtr.xrecoff = BLCKSZ;
    	}
    	else
    		NewPageEndPtr.xrecoff += BLCKSZ;
    	XLogCtl->xlblocks[nextidx] = NewPageEndPtr;
    	NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * BLCKSZ);
    	Insert->curridx = nextidx;
    	Insert->currpage = NewPage;
    	Insert->currpos = ((char *) NewPage) + SizeOfXLogPHD;
    
    	/*
    	 * Be sure to re-zero the buffer so that bytes beyond what we've
    	 * written will look like zeroes and not valid XLOG records...
    	 */
    	MemSet((char *) NewPage, 0, BLCKSZ);
    
    	/* And fill the new page's header */
    	NewPage->xlp_magic = XLOG_PAGE_MAGIC;
    	/* NewPage->xlp_info = 0; */	/* done by memset */
    	NewPage->xlp_sui = ThisStartUpID;
    	NewPage->xlp_pageaddr.xlogid = NewPageEndPtr.xlogid;
    	NewPage->xlp_pageaddr.xrecoff = NewPageEndPtr.xrecoff - BLCKSZ;
    
    	return update_needed;
    }
    
    /*
     * Write and/or fsync the log at least as far as WriteRqst indicates.
     *
     * Must be called with WALWriteLock held.
     */
    static void
    XLogWrite(XLogwrtRqst WriteRqst)
    {
    	XLogCtlWrite *Write = &XLogCtl->Write;
    	char	   *from;
    	bool		ispartialpage;
    	bool		use_existent;
    
    	/*
    	 * Update local LogwrtResult (caller probably did this already,
    	 * but...)
    	 */
    	LogwrtResult = Write->LogwrtResult;
    
    	while (XLByteLT(LogwrtResult.Write, WriteRqst.Write))
    	{
    		/*
    		 * Make sure we're not ahead of the insert process.  This could
    		 * happen if we're passed a bogus WriteRqst.Write that is past the
    		 * end of the last page that's been initialized by
    		 * AdvanceXLInsertBuffer.
    		 */
    		if (!XLByteLT(LogwrtResult.Write, XLogCtl->xlblocks[Write->curridx]))
    			elog(PANIC, "XLogWrite: write request %X/%X is past end of log %X/%X",
    				 LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff,
    				 XLogCtl->xlblocks[Write->curridx].xlogid,
    				 XLogCtl->xlblocks[Write->curridx].xrecoff);
    
    		/* Advance LogwrtResult.Write to end of current buffer page */
    		LogwrtResult.Write = XLogCtl->xlblocks[Write->curridx];
    		ispartialpage = XLByteLT(WriteRqst.Write, LogwrtResult.Write);
    
    		if (!XLByteInPrevSeg(LogwrtResult.Write, openLogId, openLogSeg))
    		{
    			/*
    			 * Switch to new logfile segment.
    			 */
    			if (openLogFile >= 0)
    			{
    				if (close(openLogFile) != 0)
    					elog(PANIC, "close of log file %u, segment %u failed: %m",
    						 openLogId, openLogSeg);
    				openLogFile = -1;
    			}
    			XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg);
    
    			/* create/use new log file */
    			use_existent = true;
    			openLogFile = XLogFileInit(openLogId, openLogSeg,
    									   &use_existent, true);
    			openLogOff = 0;
    
    			/* update pg_control, unless someone else already did */
    			LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
    			if (ControlFile->logId < openLogId ||
    				(ControlFile->logId == openLogId &&
    				 ControlFile->logSeg < openLogSeg + 1))
    			{
    				ControlFile->logId = openLogId;
    				ControlFile->logSeg = openLogSeg + 1;
    				ControlFile->time = time(NULL);
    				UpdateControlFile();
    
    				/*
    				 * Signal postmaster to start a checkpoint if it's been
    				 * too long since the last one.  (We look at local copy of
    				 * RedoRecPtr which might be a little out of date, but
    				 * should be close enough for this purpose.)
    				 */
    				if (IsUnderPostmaster &&
    					(openLogId != RedoRecPtr.xlogid ||
    					 openLogSeg >= (RedoRecPtr.xrecoff / XLogSegSize) +
    					 (uint32) CheckPointSegments))
    				{
    					if (XLOG_DEBUG)
    						elog(LOG, "XLogWrite: time for a checkpoint, signaling postmaster");
    					SendPostmasterSignal(PMSIGNAL_DO_CHECKPOINT);
    				}
    			}
    			LWLockRelease(ControlFileLock);
    		}
    
    		if (openLogFile < 0)
    		{
    			XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg);
    			openLogFile = XLogFileOpen(openLogId, openLogSeg, false);
    			openLogOff = 0;
    		}
    
    		/* Need to seek in the file? */
    		if (openLogOff != (LogwrtResult.Write.xrecoff - BLCKSZ) % XLogSegSize)
    		{
    			openLogOff = (LogwrtResult.Write.xrecoff - BLCKSZ) % XLogSegSize;
    			if (lseek(openLogFile, (off_t) openLogOff, SEEK_SET) < 0)
    				elog(PANIC, "lseek of log file %u, segment %u, offset %u failed: %m",
    					 openLogId, openLogSeg, openLogOff);
    		}
    
    		/* OK to write the page */
    		from = XLogCtl->pages + Write->curridx * BLCKSZ;
    		errno = 0;
    		if (write(openLogFile, from, BLCKSZ) != BLCKSZ)
    		{
    			/* if write didn't set errno, assume problem is no disk space */
    			if (errno == 0)
    				errno = ENOSPC;
    			elog(PANIC, "write of log file %u, segment %u, offset %u failed: %m",
    				 openLogId, openLogSeg, openLogOff);
    		}
    		openLogOff += BLCKSZ;
    
    		/*
    		 * If we just wrote the whole last page of a logfile segment,
    		 * fsync the segment immediately.  This avoids having to go back
    		 * and re-open prior segments when an fsync request comes along
    		 * later. Doing it here ensures that one and only one backend will
    		 * perform this fsync.
    		 */
    		if (openLogOff >= XLogSegSize && !ispartialpage)
    		{
    			issue_xlog_fsync();
    			LogwrtResult.Flush = LogwrtResult.Write;	/* end of current page */
    		}
    
    		if (ispartialpage)
    		{
    			/* Only asked to write a partial page */
    			LogwrtResult.Write = WriteRqst.Write;
    			break;
    		}
    		Write->curridx = NextBufIdx(Write->curridx);
    	}
    
    	/*
    	 * If asked to flush, do so
    	 */
    	if (XLByteLT(LogwrtResult.Flush, WriteRqst.Flush) &&
    		XLByteLT(LogwrtResult.Flush, LogwrtResult.Write))
    	{
    		/*
    		 * Could get here without iterating above loop, in which case we
    		 * might have no open file or the wrong one.  However, we do not
    		 * need to fsync more than one file.
    		 */
    		if (sync_method != SYNC_METHOD_OPEN)
    		{
    			if (openLogFile >= 0 &&
    			 !XLByteInPrevSeg(LogwrtResult.Write, openLogId, openLogSeg))
    			{
    				if (close(openLogFile) != 0)
    					elog(PANIC, "close of log file %u, segment %u failed: %m",
    						 openLogId, openLogSeg);
    				openLogFile = -1;
    			}
    			if (openLogFile < 0)
    			{
    				XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg);
    				openLogFile = XLogFileOpen(openLogId, openLogSeg, false);
    				openLogOff = 0;
    			}
    			issue_xlog_fsync();
    		}
    		LogwrtResult.Flush = LogwrtResult.Write;
    	}
    
    	/*
    	 * Update shared-memory status
    	 *
    	 * We make sure that the shared 'request' values do not fall behind the
    	 * 'result' values.  This is not absolutely essential, but it saves
    	 * some code in a couple of places.
    	 */
    	{
    		/* use volatile pointer to prevent code rearrangement */
    		volatile XLogCtlData *xlogctl = XLogCtl;
    
    		SpinLockAcquire_NoHoldoff(&xlogctl->info_lck);
    		xlogctl->LogwrtResult = LogwrtResult;
    		if (XLByteLT(xlogctl->LogwrtRqst.Write, LogwrtResult.Write))
    			xlogctl->LogwrtRqst.Write = LogwrtResult.Write;
    		if (XLByteLT(xlogctl->LogwrtRqst.Flush, LogwrtResult.Flush))
    			xlogctl->LogwrtRqst.Flush = LogwrtResult.Flush;
    		SpinLockRelease_NoHoldoff(&xlogctl->info_lck);
    	}
    
    	Write->LogwrtResult = LogwrtResult;
    }
    
    /*
     * Ensure that all XLOG data through the given position is flushed to disk.
     *
     * NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not
     * already held, and we try to avoid acquiring it if possible.
     */
    void
    XLogFlush(XLogRecPtr record)
    {
    	XLogRecPtr	WriteRqstPtr;
    	XLogwrtRqst WriteRqst;
    
    	/* Disabled during REDO */
    	if (InRedo)
    		return;
    
    	/* Quick exit if already known flushed */
    	if (XLByteLE(record, LogwrtResult.Flush))
    		return;
    
    	if (XLOG_DEBUG)
    	{
    		elog(LOG, "XLogFlush%s: request %X/%X; write %X/%X; flush %X/%X",
    			 (IsBootstrapProcessingMode()) ? "(bootstrap)" : "",
    			 record.xlogid, record.xrecoff,
    			 LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff,
    			 LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff);
    	}
    
    	START_CRIT_SECTION();
    
    	/*
    	 * Since fsync is usually a horribly expensive operation, we try to
    	 * piggyback as much data as we can on each fsync: if we see any more
    	 * data entered into the xlog buffer, we'll write and fsync that too,
    	 * so that the final value of LogwrtResult.Flush is as large as
    	 * possible. This gives us some chance of avoiding another fsync
    	 * immediately after.
    	 */
    
    	/* initialize to given target; may increase below */
    	WriteRqstPtr = record;
    
    	/* read LogwrtResult and update local state */
    	{
    		/* use volatile pointer to prevent code rearrangement */
    		volatile XLogCtlData *xlogctl = XLogCtl;
    
    		SpinLockAcquire_NoHoldoff(&xlogctl->info_lck);
    		if (XLByteLT(WriteRqstPtr, xlogctl->LogwrtRqst.Write))
    			WriteRqstPtr = xlogctl->LogwrtRqst.Write;
    		LogwrtResult = xlogctl->LogwrtResult;
    		SpinLockRelease_NoHoldoff(&xlogctl->info_lck);
    	}
    
    	/* done already? */
    	if (!XLByteLE(record, LogwrtResult.Flush))
    	{
    		/* now wait for the write lock */
    		LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
    		LogwrtResult = XLogCtl->Write.LogwrtResult;
    		if (!XLByteLE(record, LogwrtResult.Flush))
    		{
    			/* try to write/flush later additions to XLOG as well */
    			if (LWLockConditionalAcquire(WALInsertLock, LW_EXCLUSIVE))
    			{
    				XLogCtlInsert *Insert = &XLogCtl->Insert;
    				uint32		freespace = INSERT_FREESPACE(Insert);
    
    				if (freespace < SizeOfXLogRecord)	/* buffer is full */
    					WriteRqstPtr = XLogCtl->xlblocks[Insert->curridx];
    				else
    				{
    					WriteRqstPtr = XLogCtl->xlblocks[Insert->curridx];
    					WriteRqstPtr.xrecoff -= freespace;
    				}
    				LWLockRelease(WALInsertLock);
    				WriteRqst.Write = WriteRqstPtr;
    				WriteRqst.Flush = WriteRqstPtr;
    			}
    			else
    			{
    				WriteRqst.Write = WriteRqstPtr;
    				WriteRqst.Flush = record;
    			}
    			XLogWrite(WriteRqst);
    		}
    		LWLockRelease(WALWriteLock);
    	}
    
    	END_CRIT_SECTION();
    
    	/*
    	 * If we still haven't flushed to the request point then we have a
    	 * problem; most likely, the requested flush point is past end of
    	 * XLOG. This has been seen to occur when a disk page has a corrupted
    	 * LSN.
    	 *
    	 * Formerly we treated this as a PANIC condition, but that hurts the
    	 * system's robustness rather than helping it: we do not want to take
    	 * down the whole system due to corruption on one data page.  In
    	 * particular, if the bad page is encountered again during recovery
    	 * then we would be unable to restart the database at all!	(This
    	 * scenario has actually happened in the field several times with 7.1
    	 * releases. Note that we cannot get here while InRedo is true, but if
    	 * the bad page is brought in and marked dirty during recovery then
    	 * CreateCheckpoint will try to flush it at the end of recovery.)
    	 *
    	 * The current approach is to ERROR under normal conditions, but only
    	 * WARNING during recovery, so that the system can be brought up even
    	 * if there's a corrupt LSN.  Note that for calls from xact.c, the
    	 * ERROR will be promoted to PANIC since xact.c calls this routine
    	 * inside a critical section.  However, calls from bufmgr.c are not
    	 * within critical sections and so we will not force a restart for a
    	 * bad LSN on a data page.
    	 */
    	if (XLByteLT(LogwrtResult.Flush, record))
    		elog(InRecovery ? WARNING : ERROR,
    			 "XLogFlush: request %X/%X is not satisfied --- flushed only to %X/%X",
    			 record.xlogid, record.xrecoff,
    			 LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff);
    }
    
    /*
     * Create a new XLOG file segment, or open a pre-existing one.
     *
     * log, seg: identify segment to be created/opened.
     *
     * *use_existent: if TRUE, OK to use a pre-existing file (else, any
     * pre-existing file will be deleted).	On return, TRUE if a pre-existing
     * file was used.
     *
     * use_lock: if TRUE, acquire ControlFileLock while moving file into
     * place.  This should be TRUE except during bootstrap log creation.  The
     * caller must *not* hold the lock at call.
     *
     * Returns FD of opened file.
     */
    static int
    XLogFileInit(uint32 log, uint32 seg,
    			 bool *use_existent, bool use_lock)
    {
    	char		path[MAXPGPATH];
    	char		tmppath[MAXPGPATH];
    	char		zbuffer[BLCKSZ];
    	int			fd;
    	int			nbytes;
    
    	XLogFileName(path, log, seg);
    
    	/*
    	 * Try to use existent file (checkpoint maker may have created it
    	 * already)
    	 */
    	if (*use_existent)
    	{
    		fd = BasicOpenFile(path, O_RDWR | PG_BINARY | XLOG_SYNC_BIT,
    						   S_IRUSR | S_IWUSR);
    		if (fd < 0)
    		{
    			if (errno != ENOENT)
    				elog(PANIC, "open of %s (log file %u, segment %u) failed: %m",
    					 path, log, seg);
    		}
    		else
    			return (fd);
    	}
    
    	/*
    	 * Initialize an empty (all zeroes) segment.  NOTE: it is possible
    	 * that another process is doing the same thing.  If so, we will end
    	 * up pre-creating an extra log segment.  That seems OK, and better
    	 * than holding the lock throughout this lengthy process.
    	 */
    	snprintf(tmppath, MAXPGPATH, "%s/xlogtemp.%d",
    			 XLogDir, (int) getpid());
    
    	unlink(tmppath);
    
    	/* do not use XLOG_SYNC_BIT here --- want to fsync only at end of fill */
    	fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
    					   S_IRUSR | S_IWUSR);
    	if (fd < 0)
    		elog(PANIC, "creation of file %s failed: %m", tmppath);
    
    	/*
    	 * Zero-fill the file.	We have to do this the hard way to ensure that
    	 * all the file space has really been allocated --- on platforms that
    	 * allow "holes" in files, just seeking to the end doesn't allocate
    	 * intermediate space.	This way, we know that we have all the space
    	 * and (after the fsync below) that all the indirect blocks are down
    	 * on disk.  Therefore, fdatasync(2) or O_DSYNC will be sufficient to
    	 * sync future writes to the log file.
    	 */
    	MemSet(zbuffer, 0, sizeof(zbuffer));
    	for (nbytes = 0; nbytes < XLogSegSize; nbytes += sizeof(zbuffer))
    	{
    		errno = 0;
    		if ((int) write(fd, zbuffer, sizeof(zbuffer)) != (int) sizeof(zbuffer))
    		{
    			int			save_errno = errno;
    
    			/*
    			 * If we fail to make the file, delete it to release disk
    			 * space
    			 */
    			unlink(tmppath);
    			/* if write didn't set errno, assume problem is no disk space */
    			errno = save_errno ? save_errno : ENOSPC;
    
    			elog(PANIC, "ZeroFill failed to write %s: %m", tmppath);
    		}
    	}
    
    	if (pg_fsync(fd) != 0)
    		elog(PANIC, "fsync of file %s failed: %m", tmppath);
    
    	close(fd);
    
    	/*
    	 * Now move the segment into place with its final name.
    	 *
    	 * If caller didn't want to use a pre-existing file, get rid of any
    	 * pre-existing file.  Otherwise, cope with possibility that someone
    	 * else has created the file while we were filling ours: if so, use
    	 * ours to pre-create a future log segment.
    	 */
    	if (!InstallXLogFileSegment(log, seg, tmppath,
    								*use_existent, XLOGfileslop,
    								use_lock))
    	{
    		/* No need for any more future segments... */
    		unlink(tmppath);
    	}
    
    	/* Set flag to tell caller there was no existent file */
    	*use_existent = false;
    
    	/* Now open original target segment (might not be file I just made) */
    	fd = BasicOpenFile(path, O_RDWR | PG_BINARY | XLOG_SYNC_BIT,
    					   S_IRUSR | S_IWUSR);
    	if (fd < 0)
    		elog(PANIC, "open of %s (log file %u, segment %u) failed: %m",
    			 path, log, seg);
    
    	return (fd);
    }
    
    /*
     * Install a new XLOG segment file as a current or future log segment.
     *
     * This is used both to install a newly-created segment (which has a temp
     * filename while it's being created) and to recycle an old segment.
     *
     * log, seg: identify segment to install as (or first possible target).
     *
     * tmppath: initial name of file to install.  It will be renamed into place.
     *
     * find_free: if TRUE, install the new segment at the first empty log/seg
     * number at or after the passed numbers.  If FALSE, install the new segment
     * exactly where specified, deleting any existing segment file there.
     *
     * max_advance: maximum number of log/seg slots to advance past the starting
     * point.  Fail if no free slot is found in this range.  (Irrelevant if
     * find_free is FALSE.)
     *
     * use_lock: if TRUE, acquire ControlFileLock while moving file into
     * place.  This should be TRUE except during bootstrap log creation.  The
     * caller must *not* hold the lock at call.
     *
     * Returns TRUE if file installed, FALSE if not installed because of
     * exceeding max_advance limit.  (Any other kind of failure causes elog().)
     */
    static bool
    InstallXLogFileSegment(uint32 log, uint32 seg, char *tmppath,
    					   bool find_free, int max_advance,
    					   bool use_lock)
    {
    	char		path[MAXPGPATH];
    	struct stat stat_buf;
    
    	XLogFileName(path, log, seg);
    
    	/*
    	 * We want to be sure that only one process does this at a time.
    	 */
    	if (use_lock)
    		LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
    
    	if (!find_free)
    	{
    		/* Force installation: get rid of any pre-existing segment file */
    		unlink(path);
    	}
    	else
    	{
    		/* Find a free slot to put it in */
    		while (stat(path, &stat_buf) == 0)
    		{
    			if (--max_advance < 0)
    			{
    				/* Failed to find a free slot within specified range */
    				if (use_lock)
    					LWLockRelease(ControlFileLock);
    				return false;
    			}
    			NextLogSeg(log, seg);
    			XLogFileName(path, log, seg);
    		}
    	}
    
    	/*
    	 * Prefer link() to rename() here just to be really sure that we don't
    	 * overwrite an existing logfile.  However, there shouldn't be one, so
    	 * rename() is an acceptable substitute except for the truly paranoid.
    	 */
    #if HAVE_WORKING_LINK
    	if (link(tmppath, path) < 0)
    		elog(PANIC, "link from %s to %s (initialization of log file %u, segment %u) failed: %m",
    			 tmppath, path, log, seg);
    	unlink(tmppath);
    #else
    	if (rename(tmppath, path) < 0)
    		elog(PANIC, "rename from %s to %s (initialization of log file %u, segment %u) failed: %m",
    			 tmppath, path, log, seg);
    #endif
    
    	if (use_lock)
    		LWLockRelease(ControlFileLock);
    
    	return true;
    }
    
    /*
     * Open a pre-existing logfile segment.
     */
    static int
    XLogFileOpen(uint32 log, uint32 seg, bool econt)
    {
    	char		path[MAXPGPATH];
    	int			fd;
    
    	XLogFileName(path, log, seg);
    
    	fd = BasicOpenFile(path, O_RDWR | PG_BINARY | XLOG_SYNC_BIT,
    					   S_IRUSR | S_IWUSR);
    	if (fd < 0)
    	{
    		if (econt && errno == ENOENT)
    		{
    			elog(LOG, "open of %s (log file %u, segment %u) failed: %m",
    				 path, log, seg);
    			return (fd);
    		}
    		elog(PANIC, "open of %s (log file %u, segment %u) failed: %m",
    			 path, log, seg);
    	}
    
    	return (fd);
    }
    
    /*
     * Preallocate log files beyond the specified log endpoint, according to
     * the XLOGfile user parameter.
     */
    static void
    PreallocXlogFiles(XLogRecPtr endptr)
    {
    	uint32		_logId;
    	uint32		_logSeg;
    	int			lf;
    	bool		use_existent;
    
    	XLByteToPrevSeg(endptr, _logId, _logSeg);
    	if ((endptr.xrecoff - 1) % XLogSegSize >=
    		(uint32) (0.75 * XLogSegSize))
    	{
    		NextLogSeg(_logId, _logSeg);
    		use_existent = true;
    		lf = XLogFileInit(_logId, _logSeg, &use_existent, true);
    		close(lf);
    	}
    }
    
    /*
     * Remove or move offline all log files older or equal to passed log/seg#
     *
     * endptr is current (or recent) end of xlog; this is used to determine
     * whether we want to recycle rather than delete no-longer-wanted log files.
     */
    static void
    MoveOfflineLogs(uint32 log, uint32 seg, XLogRecPtr endptr)
    {
    	uint32		endlogId;
    	uint32		endlogSeg;
    	DIR		   *xldir;
    	struct dirent *xlde;
    	char		lastoff[32];
    	char		path[MAXPGPATH];
    
    	XLByteToPrevSeg(endptr, endlogId, endlogSeg);
    
    	xldir = opendir(XLogDir);
    	if (xldir == NULL)
    		elog(PANIC, "could not open transaction log directory (%s): %m",
    			 XLogDir);
    
    	sprintf(lastoff, "%08X%08X", log, seg);
    
    	errno = 0;
    	while ((xlde = readdir(xldir)) != NULL)
    	{
    		if (strlen(xlde->d_name) == 16 &&
    			strspn(xlde->d_name, "0123456789ABCDEF") == 16 &&
    			strcmp(xlde->d_name, lastoff) <= 0)
    		{
    			snprintf(path, MAXPGPATH, "%s/%s", XLogDir, xlde->d_name);
    			if (XLOG_archive_dir[0])
    			{
    				elog(LOG, "archiving transaction log file %s",
    					 xlde->d_name);
    				elog(WARNING, "archiving log files is not implemented!");
    			}
    			else
    			{
    				/*
    				 * Before deleting the file, see if it can be recycled as
    				 * a future log segment.  We allow recycling segments up
    				 * to XLOGfileslop segments beyond the current XLOG
    				 * location.
    				 */
    				if (InstallXLogFileSegment(endlogId, endlogSeg, path,
    										   true, XLOGfileslop,
    										   true))
    				{
    					elog(LOG, "recycled transaction log file %s",
    						 xlde->d_name);
    				}
    				else
    				{
    					/* No need for any more future segments... */
    					elog(LOG, "removing transaction log file %s",
    						 xlde->d_name);
    					unlink(path);
    				}
    			}
    		}
    		errno = 0;
    	}
    	if (errno)
    		elog(PANIC, "could not read transaction log directory (%s): %m",
    			 XLogDir);
    	closedir(xldir);
    }
    
    /*
     * Restore the backup blocks present in an XLOG record, if any.
     *
     * We assume all of the record has been read into memory at *record.
     */
    static void
    RestoreBkpBlocks(XLogRecord *record, XLogRecPtr lsn)
    {
    	Relation	reln;
    	Buffer		buffer;
    	Page		page;
    	BkpBlock	bkpb;
    	char	   *blk;
    	int			i;
    
    	blk = (char *) XLogRecGetData(record) + record->xl_len;
    	for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
    	{
    		if (!(record->xl_info & XLR_SET_BKP_BLOCK(i)))
    			continue;
    
    		memcpy((char *) &bkpb, blk, sizeof(BkpBlock));
    		blk += sizeof(BkpBlock);
    
    		reln = XLogOpenRelation(true, record->xl_rmid, bkpb.node);
    
    		if (reln)
    		{
    			buffer = XLogReadBuffer(true, reln, bkpb.block);
    			if (BufferIsValid(buffer))
    			{
    				page = (Page) BufferGetPage(buffer);
    				memcpy((char *) page, blk, BLCKSZ);
    				PageSetLSN(page, lsn);
    				PageSetSUI(page, ThisStartUpID);
    				UnlockAndWriteBuffer(buffer);
    			}
    		}
    
    		blk += BLCKSZ;
    	}
    }
    
    /*
     * CRC-check an XLOG record.  We do not believe the contents of an XLOG
     * record (other than to the minimal extent of computing the amount of
     * data to read in) until we've checked the CRCs.
     *
     * We assume all of the record has been read into memory at *record.
     */
    static bool
    RecordIsValid(XLogRecord *record, XLogRecPtr recptr, int emode)
    {
    	crc64		crc;
    	crc64		cbuf;
    	int			i;
    	uint32		len = record->xl_len;
    	char	   *blk;
    
    	/* Check CRC of rmgr data and record header */
    	INIT_CRC64(crc);
    	COMP_CRC64(crc, XLogRecGetData(record), len);
    	COMP_CRC64(crc, (char *) record + sizeof(crc64),
    			   SizeOfXLogRecord - sizeof(crc64));
    	FIN_CRC64(crc);
    
    	if (!EQ_CRC64(record->xl_crc, crc))
    	{
    		elog(emode, "ReadRecord: bad resource manager data checksum in record at %X/%X",
    			 recptr.xlogid, recptr.xrecoff);
    		return (false);
    	}
    
    	/* Check CRCs of backup blocks, if any */
    	blk = (char *) XLogRecGetData(record) + len;
    	for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
    	{
    		if (!(record->xl_info & XLR_SET_BKP_BLOCK(i)))
    			continue;
    
    		INIT_CRC64(crc);
    		COMP_CRC64(crc, blk + sizeof(BkpBlock), BLCKSZ);
    		COMP_CRC64(crc, blk + sizeof(crc64),
    				   sizeof(BkpBlock) - sizeof(crc64));
    		FIN_CRC64(crc);
    		memcpy((char *) &cbuf, blk, sizeof(crc64));		/* don't assume
    														 * alignment */
    
    		if (!EQ_CRC64(cbuf, crc))
    		{
    			elog(emode, "ReadRecord: bad checksum of backup block %d in record at %X/%X",
    				 i + 1, recptr.xlogid, recptr.xrecoff);
    			return (false);
    		}
    		blk += sizeof(BkpBlock) + BLCKSZ;
    	}
    
    	return (true);
    }
    
    /*
     * Attempt to read an XLOG record.
     *
     * If RecPtr is not NULL, try to read a record at that position.  Otherwise
     * try to read a record just after the last one previously read.
     *
     * If no valid record is available, returns NULL, or fails if emode is PANIC.
     * (emode must be either PANIC or LOG.)
     *
     * buffer is a workspace at least _INTL_MAXLOGRECSZ bytes long.  It is needed
     * to reassemble a record that crosses block boundaries.  Note that on
     * successful return, the returned record pointer always points at buffer.
     */
    static XLogRecord *
    ReadRecord(XLogRecPtr *RecPtr, int emode, char *buffer)
    {
    	XLogRecord *record;
    	XLogRecPtr	tmpRecPtr = EndRecPtr;
    	uint32		len,
    				total_len;
    	uint32		targetPageOff;
    	unsigned	i;
    	bool		nextmode = false;
    
    	if (readBuf == NULL)
    	{
    		/*
    		 * First time through, permanently allocate readBuf.  We do it
    		 * this way, rather than just making a static array, for two
    		 * reasons: (1) no need to waste the storage in most
    		 * instantiations of the backend; (2) a static char array isn't
    		 * guaranteed to have any particular alignment, whereas malloc()
    		 * will provide MAXALIGN'd storage.
    		 */
    		readBuf = (char *) malloc(BLCKSZ);
    		Assert(readBuf != NULL);
    	}
    
    	if (RecPtr == NULL)
    	{
    		RecPtr = &tmpRecPtr;
    		nextmode = true;
    		/* fast case if next record is on same page */
    		if (nextRecord != NULL)
    		{
    			record = nextRecord;
    			goto got_record;
    		}
    		/* align old recptr to next page */
    		if (tmpRecPtr.xrecoff % BLCKSZ != 0)
    			tmpRecPtr.xrecoff += (BLCKSZ - tmpRecPtr.xrecoff % BLCKSZ);
    		if (tmpRecPtr.xrecoff >= XLogFileSize)
    		{
    			(tmpRecPtr.xlogid)++;
    			tmpRecPtr.xrecoff = 0;
    		}
    		tmpRecPtr.xrecoff += SizeOfXLogPHD;
    	}
    	else if (!XRecOffIsValid(RecPtr->xrecoff))
    		elog(PANIC, "ReadRecord: invalid record offset at %X/%X",
    			 RecPtr->xlogid, RecPtr->xrecoff);
    
    	if (readFile >= 0 && !XLByteInSeg(*RecPtr, readId, readSeg))
    	{
    		close(readFile);
    		readFile = -1;
    	}
    	XLByteToSeg(*RecPtr, readId, readSeg);
    	if (readFile < 0)
    	{
    		readFile = XLogFileOpen(readId, readSeg, (emode == LOG));
    		if (readFile < 0)
    			goto next_record_is_invalid;
    		readOff = (uint32) (-1);	/* force read to occur below */
    	}
    
    	targetPageOff = ((RecPtr->xrecoff % XLogSegSize) / BLCKSZ) * BLCKSZ;
    	if (readOff != targetPageOff)
    	{
    		readOff = targetPageOff;
    		if (lseek(readFile, (off_t) readOff, SEEK_SET) < 0)
    		{
    			elog(emode, "ReadRecord: lseek of log file %u, segment %u, offset %u failed: %m",
    				 readId, readSeg, readOff);
    			goto next_record_is_invalid;
    		}
    		if (read(readFile, readBuf, BLCKSZ) != BLCKSZ)
    		{
    			elog(emode, "ReadRecord: read of log file %u, segment %u, offset %u failed: %m",
    				 readId, readSeg, readOff);
    			goto next_record_is_invalid;
    		}
    		if (!ValidXLOGHeader((XLogPageHeader) readBuf, emode, nextmode))
    			goto next_record_is_invalid;
    	}
    	if ((((XLogPageHeader) readBuf)->xlp_info & XLP_FIRST_IS_CONTRECORD) &&
    		RecPtr->xrecoff % BLCKSZ == SizeOfXLogPHD)
    	{
    		elog(emode, "ReadRecord: contrecord is requested by %X/%X",
    			 RecPtr->xlogid, RecPtr->xrecoff);
    		goto next_record_is_invalid;
    	}
    	record = (XLogRecord *) ((char *) readBuf + RecPtr->xrecoff % BLCKSZ);
    
    got_record:;
    
    	/*
    	 * Currently, xl_len == 0 must be bad data, but that might not be true
    	 * forever.  See note in XLogInsert.
    	 */
    	if (record->xl_len == 0)
    	{
    		elog(emode, "ReadRecord: record with zero length at %X/%X",
    			 RecPtr->xlogid, RecPtr->xrecoff);
    		goto next_record_is_invalid;
    	}
    
    	/*
    	 * Compute total length of record including any appended backup
    	 * blocks.
    	 */
    	total_len = SizeOfXLogRecord + record->xl_len;
    	for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
    	{
    		if (!(record->xl_info & XLR_SET_BKP_BLOCK(i)))
    			continue;
    		total_len += sizeof(BkpBlock) + BLCKSZ;
    	}
    
    	/*
    	 * Make sure it will fit in buffer (currently, it is mechanically
    	 * impossible for this test to fail, but it seems like a good idea
    	 * anyway).
    	 */
    	if (total_len > _INTL_MAXLOGRECSZ)
    	{
    		elog(emode, "ReadRecord: record length %u at %X/%X too long",
    			 total_len, RecPtr->xlogid, RecPtr->xrecoff);
    		goto next_record_is_invalid;
    	}
    	if (record->xl_rmid > RM_MAX_ID)
    	{
    		elog(emode, "ReadRecord: invalid resource manager id %u at %X/%X",
    			 record->xl_rmid, RecPtr->xlogid, RecPtr->xrecoff);
    		goto next_record_is_invalid;
    	}
    	nextRecord = NULL;
    	len = BLCKSZ - RecPtr->xrecoff % BLCKSZ;
    	if (total_len > len)
    	{
    		/* Need to reassemble record */
    		XLogContRecord *contrecord;
    		uint32		gotlen = len;
    
    		memcpy(buffer, record, len);
    		record = (XLogRecord *) buffer;
    		buffer += len;
    		for (;;)
    		{
    			readOff += BLCKSZ;
    			if (readOff >= XLogSegSize)
    			{
    				close(readFile);
    				readFile = -1;
    				NextLogSeg(readId, readSeg);
    				readFile = XLogFileOpen(readId, readSeg, (emode == LOG));
    				if (readFile < 0)
    					goto next_record_is_invalid;
    				readOff = 0;
    			}
    			if (read(readFile, readBuf, BLCKSZ) != BLCKSZ)
    			{
    				elog(emode, "ReadRecord: read of log file %u, segment %u, offset %u failed: %m",
    					 readId, readSeg, readOff);
    				goto next_record_is_invalid;
    			}
    			if (!ValidXLOGHeader((XLogPageHeader) readBuf, emode, true))
    				goto next_record_is_invalid;
    			if (!(((XLogPageHeader) readBuf)->xlp_info & XLP_FIRST_IS_CONTRECORD))
    			{
    				elog(emode, "ReadRecord: there is no ContRecord flag in log file %u, segment %u, offset %u",
    					 readId, readSeg, readOff);
    				goto next_record_is_invalid;
    			}
    			contrecord = (XLogContRecord *) ((char *) readBuf + SizeOfXLogPHD);
    			if (contrecord->xl_rem_len == 0 ||
    				total_len != (contrecord->xl_rem_len + gotlen))
    			{
    				elog(emode, "ReadRecord: invalid ContRecord length %u in log file %u, segment %u, offset %u",
    					 contrecord->xl_rem_len, readId, readSeg, readOff);
    				goto next_record_is_invalid;
    			}
    			len = BLCKSZ - SizeOfXLogPHD - SizeOfXLogContRecord;
    			if (contrecord->xl_rem_len > len)
    			{
    				memcpy(buffer, (char *) contrecord + SizeOfXLogContRecord, len);
    				gotlen += len;
    				buffer += len;
    				continue;
    			}
    			memcpy(buffer, (char *) contrecord + SizeOfXLogContRecord,
    				   contrecord->xl_rem_len);
    			break;
    		}
    		if (!RecordIsValid(record, *RecPtr, emode))
    			goto next_record_is_invalid;
    		if (BLCKSZ - SizeOfXLogRecord >= SizeOfXLogPHD +
    			SizeOfXLogContRecord + MAXALIGN(contrecord->xl_rem_len))
    		{
    			nextRecord = (XLogRecord *) ((char *) contrecord +
    				SizeOfXLogContRecord + MAXALIGN(contrecord->xl_rem_len));
    		}
    		EndRecPtr.xlogid = readId;
    		EndRecPtr.xrecoff = readSeg * XLogSegSize + readOff +
    			SizeOfXLogPHD + SizeOfXLogContRecord +
    			MAXALIGN(contrecord->xl_rem_len);
    		ReadRecPtr = *RecPtr;
    		return record;
    	}
    
    	/* Record does not cross a page boundary */
    	if (!RecordIsValid(record, *RecPtr, emode))
    		goto next_record_is_invalid;
    	if (BLCKSZ - SizeOfXLogRecord >= RecPtr->xrecoff % BLCKSZ +
    		MAXALIGN(total_len))
    		nextRecord = (XLogRecord *) ((char *) record + MAXALIGN(total_len));
    	EndRecPtr.xlogid = RecPtr->xlogid;
    	EndRecPtr.xrecoff = RecPtr->xrecoff + MAXALIGN(total_len);
    	ReadRecPtr = *RecPtr;
    	memcpy(buffer, record, total_len);
    	return (XLogRecord *) buffer;
    
    next_record_is_invalid:;
    	close(readFile);
    	readFile = -1;
    	nextRecord = NULL;
    	return NULL;
    }
    
    /*
     * Check whether the xlog header of a page just read in looks valid.
     *
     * This is just a convenience subroutine to avoid duplicated code in
     * ReadRecord.	It's not intended for use from anywhere else.
     */
    static bool
    ValidXLOGHeader(XLogPageHeader hdr, int emode, bool checkSUI)
    {
    	XLogRecPtr	recaddr;
    
    	if (hdr->xlp_magic != XLOG_PAGE_MAGIC)
    	{
    		elog(emode, "ReadRecord: invalid magic number %04X in log file %u, segment %u, offset %u",
    			 hdr->xlp_magic, readId, readSeg, readOff);
    		return false;
    	}
    	if ((hdr->xlp_info & ~XLP_ALL_FLAGS) != 0)
    	{
    		elog(emode, "ReadRecord: invalid info bits %04X in log file %u, segment %u, offset %u",
    			 hdr->xlp_info, readId, readSeg, readOff);
    		return false;
    	}
    	recaddr.xlogid = readId;
    	recaddr.xrecoff = readSeg * XLogSegSize + readOff;
    	if (!XLByteEQ(hdr->xlp_pageaddr, recaddr))
    	{
    		elog(emode, "ReadRecord: unexpected pageaddr %X/%X in log file %u, segment %u, offset %u",
    			 hdr->xlp_pageaddr.xlogid, hdr->xlp_pageaddr.xrecoff,
    			 readId, readSeg, readOff);
    		return false;
    	}
    
    	/*
    	 * We disbelieve a SUI less than the previous page's SUI, or more than
    	 * a few counts greater.  In theory as many as 512 shutdown checkpoint
    	 * records could appear on a 32K-sized xlog page, so that's the most
    	 * differential there could legitimately be.
    	 *
    	 * Note this check can only be applied when we are reading the next page
    	 * in sequence, so ReadRecord passes a flag indicating whether to
    	 * check.
    	 */
    	if (checkSUI)
    	{
    		if (hdr->xlp_sui < lastReadSUI ||
    			hdr->xlp_sui > lastReadSUI + 512)
    		{
    			/* translator: SUI = startup id */
    			elog(emode, "ReadRecord: out-of-sequence SUI %u (after %u) in log file %u, segment %u, offset %u",
    				 hdr->xlp_sui, lastReadSUI, readId, readSeg, readOff);
    			return false;
    		}
    	}
    	lastReadSUI = hdr->xlp_sui;
    	return true;
    }
    
    /*
     * I/O routines for pg_control
     *
     * *ControlFile is a buffer in shared memory that holds an image of the
     * contents of pg_control.	WriteControlFile() initializes pg_control
     * given a preloaded buffer, ReadControlFile() loads the buffer from
     * the pg_control file (during postmaster or standalone-backend startup),
     * and UpdateControlFile() rewrites pg_control after we modify xlog state.
     *
     * For simplicity, WriteControlFile() initializes the fields of pg_control
     * that are related to checking backend/database compatibility, and
     * ReadControlFile() verifies they are correct.  We could split out the
     * I/O and compatibility-check functions, but there seems no need currently.
     */
    
    void
    XLOGPathInit(void)
    {
    	/* Init XLOG file paths */
    	snprintf(XLogDir, MAXPGPATH, "%s/pg_xlog", DataDir);
    	snprintf(ControlFilePath, MAXPGPATH, "%s/global/pg_control", DataDir);
    }
    
    static void
    WriteControlFile(void)
    {
    	int			fd;
    	char		buffer[BLCKSZ]; /* need not be aligned */
    	char	   *localeptr;
    
    	/*
    	 * Initialize version and compatibility-check fields
    	 */
    	ControlFile->pg_control_version = PG_CONTROL_VERSION;
    	ControlFile->catalog_version_no = CATALOG_VERSION_NO;
    	ControlFile->blcksz = BLCKSZ;
    	ControlFile->relseg_size = RELSEG_SIZE;
    
    	ControlFile->nameDataLen = NAMEDATALEN;
    	ControlFile->funcMaxArgs = FUNC_MAX_ARGS;
    
    #ifdef HAVE_INT64_TIMESTAMP
    	ControlFile->enableIntTimes = TRUE;
    #else
    	ControlFile->enableIntTimes = FALSE;
    #endif
    
    	ControlFile->localeBuflen = LOCALE_NAME_BUFLEN;
    	localeptr = setlocale(LC_COLLATE, NULL);
    	if (!localeptr)
    		elog(PANIC, "invalid LC_COLLATE setting");
    	StrNCpy(ControlFile->lc_collate, localeptr, LOCALE_NAME_BUFLEN);
    	localeptr = setlocale(LC_CTYPE, NULL);
    	if (!localeptr)
    		elog(PANIC, "invalid LC_CTYPE setting");
    	StrNCpy(ControlFile->lc_ctype, localeptr, LOCALE_NAME_BUFLEN);
    
    	/* Contents are protected with a CRC */
    	INIT_CRC64(ControlFile->crc);
    	COMP_CRC64(ControlFile->crc,
    			   (char *) ControlFile + sizeof(crc64),
    			   sizeof(ControlFileData) - sizeof(crc64));
    	FIN_CRC64(ControlFile->crc);
    
    	/*
    	 * We write out BLCKSZ bytes into pg_control, zero-padding the excess
    	 * over sizeof(ControlFileData).  This reduces the odds of
    	 * premature-EOF errors when reading pg_control.  We'll still fail
    	 * when we check the contents of the file, but hopefully with a more
    	 * specific error than "couldn't read pg_control".
    	 */
    	if (sizeof(ControlFileData) > BLCKSZ)
    		elog(PANIC, "sizeof(ControlFileData) is larger than BLCKSZ; fix either one");
    
    	memset(buffer, 0, BLCKSZ);
    	memcpy(buffer, ControlFile, sizeof(ControlFileData));
    
    	fd = BasicOpenFile(ControlFilePath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
    					   S_IRUSR | S_IWUSR);
    	if (fd < 0)
    		elog(PANIC, "WriteControlFile: could not create control file (%s): %m",
    			 ControlFilePath);
    
    	errno = 0;
    	if (write(fd, buffer, BLCKSZ) != BLCKSZ)
    	{
    		/* if write didn't set errno, assume problem is no disk space */
    		if (errno == 0)
    			errno = ENOSPC;
    		elog(PANIC, "WriteControlFile: write to control file failed: %m");
    	}
    
    	if (pg_fsync(fd) != 0)
    		elog(PANIC, "WriteControlFile: fsync of control file failed: %m");
    
    	close(fd);
    }
    
    static void
    ReadControlFile(void)
    {
    	crc64		crc;
    	int			fd;
    
    	/*
    	 * Read data...
    	 */
    	fd = BasicOpenFile(ControlFilePath, O_RDWR | PG_BINARY, S_IRUSR | S_IWUSR);
    	if (fd < 0)
    		elog(PANIC, "could not open control file (%s): %m", ControlFilePath);
    
    	if (read(fd, ControlFile, sizeof(ControlFileData)) != sizeof(ControlFileData))
    		elog(PANIC, "read from control file failed: %m");
    
    	close(fd);
    
    	/*
    	 * Check for expected pg_control format version.  If this is wrong,
    	 * the CRC check will likely fail because we'll be checking the wrong
    	 * number of bytes.  Complaining about wrong version will probably be
    	 * more enlightening than complaining about wrong CRC.
    	 */
    	if (ControlFile->pg_control_version != PG_CONTROL_VERSION)
    		elog(PANIC,
    			 "The database cluster was initialized with PG_CONTROL_VERSION %d,\n"
    			 "\tbut the server was compiled with PG_CONTROL_VERSION %d.\n"
    			 "\tIt looks like you need to initdb.",
    			 ControlFile->pg_control_version, PG_CONTROL_VERSION);
    
    	/* Now check the CRC. */
    	INIT_CRC64(crc);
    	COMP_CRC64(crc,
    			   (char *) ControlFile + sizeof(crc64),
    			   sizeof(ControlFileData) - sizeof(crc64));
    	FIN_CRC64(crc);
    
    	if (!EQ_CRC64(crc, ControlFile->crc))
    		elog(PANIC, "invalid checksum in control file");
    
    	/*
    	 * Do compatibility checking immediately.  We do this here for 2
    	 * reasons:
    	 *
    	 * (1) if the database isn't compatible with the backend executable, we
    	 * want to abort before we can possibly do any damage;
    	 *
    	 * (2) this code is executed in the postmaster, so the setlocale() will
    	 * propagate to forked backends, which aren't going to read this file
    	 * for themselves.	(These locale settings are considered critical
    	 * compatibility items because they can affect sort order of indexes.)
    	 */
    	if (ControlFile->catalog_version_no != CATALOG_VERSION_NO)
    		elog(PANIC,
    			 "The database cluster was initialized with CATALOG_VERSION_NO %d,\n"
    		   "\tbut the backend was compiled with CATALOG_VERSION_NO %d.\n"
    			 "\tIt looks like you need to initdb.",
    			 ControlFile->catalog_version_no, CATALOG_VERSION_NO);
    	if (ControlFile->blcksz != BLCKSZ)
    		elog(PANIC,
    			 "The database cluster was initialized with BLCKSZ %d,\n"
    			 "\tbut the backend was compiled with BLCKSZ %d.\n"
    			 "\tIt looks like you need to initdb.",
    			 ControlFile->blcksz, BLCKSZ);
    	if (ControlFile->relseg_size != RELSEG_SIZE)
    		elog(PANIC,
    			 "The database cluster was initialized with RELSEG_SIZE %d,\n"
    			 "\tbut the backend was compiled with RELSEG_SIZE %d.\n"
    			 "\tIt looks like you need to recompile or initdb.",
    			 ControlFile->relseg_size, RELSEG_SIZE);
    
    	if (ControlFile->nameDataLen != NAMEDATALEN)
    		elog(PANIC,
    			 "The database cluster was initialized with NAMEDATALEN %d,\n"
    			 "\tbut the backend was compiled with NAMEDATALEN %d.\n"
    			 "\tIt looks like you need to recompile or initdb.",
    			 ControlFile->nameDataLen, NAMEDATALEN);
    
    	if (ControlFile->funcMaxArgs != FUNC_MAX_ARGS)
    		elog(PANIC,
    		  "The database cluster was initialized with FUNC_MAX_ARGS %d,\n"
    			 "\tbut the backend was compiled with FUNC_MAX_ARGS %d.\n"
    			 "\tIt looks like you need to recompile or initdb.",
    			 ControlFile->funcMaxArgs, FUNC_MAX_ARGS);
    
    #ifdef HAVE_INT64_TIMESTAMP
    	if (ControlFile->enableIntTimes != TRUE)
    		elog(PANIC,
    			 "The database cluster was initialized without HAVE_INT64_TIMESTAMP\n"
    			 "\tbut the backend was compiled with HAVE_INT64_TIMESTAMP.\n"
    			 "\tIt looks like you need to recompile or initdb.");
    #else
    	if (ControlFile->enableIntTimes != FALSE)
    		elog(PANIC,
    		"The database cluster was initialized with HAVE_INT64_TIMESTAMP\n"
    		 "\tbut the backend was compiled without HAVE_INT64_TIMESTAMP.\n"
    			 "\tIt looks like you need to recompile or initdb.");
    #endif
    
    	if (ControlFile->localeBuflen != LOCALE_NAME_BUFLEN)
    		elog(PANIC,
    			 "The database cluster was initialized with LOCALE_NAME_BUFLEN %d,\n"
    		   "\tbut the backend was compiled with LOCALE_NAME_BUFLEN %d.\n"
    			 "\tIt looks like you need to initdb.",
    			 ControlFile->localeBuflen, LOCALE_NAME_BUFLEN);
    
    	if (setlocale(LC_COLLATE, ControlFile->lc_collate) == NULL)
    		elog(PANIC,
    		   "The database cluster was initialized with LC_COLLATE '%s',\n"
    			 "\twhich is not recognized by setlocale().\n"
    			 "\tIt looks like you need to initdb.",
    			 ControlFile->lc_collate);
    	if (setlocale(LC_CTYPE, ControlFile->lc_ctype) == NULL)
    		elog(PANIC,
    			 "The database cluster was initialized with LC_CTYPE '%s',\n"
    			 "\twhich is not recognized by setlocale().\n"
    			 "\tIt looks like you need to initdb.",
    			 ControlFile->lc_ctype);
    
    	/* Make the fixed locale settings visible as GUC variables, too */
    	SetConfigOption("lc_collate", ControlFile->lc_collate,
    					PGC_INTERNAL, PGC_S_OVERRIDE);
    	SetConfigOption("lc_ctype", ControlFile->lc_ctype,
    					PGC_INTERNAL, PGC_S_OVERRIDE);
    }
    
    void
    UpdateControlFile(void)
    {
    	int			fd;
    
    	INIT_CRC64(ControlFile->crc);
    	COMP_CRC64(ControlFile->crc,
    			   (char *) ControlFile + sizeof(crc64),
    			   sizeof(ControlFileData) - sizeof(crc64));
    	FIN_CRC64(ControlFile->crc);
    
    	fd = BasicOpenFile(ControlFilePath, O_RDWR | PG_BINARY, S_IRUSR | S_IWUSR);
    	if (fd < 0)
    		elog(PANIC, "could not open control file (%s): %m", ControlFilePath);
    
    	errno = 0;
    	if (write(fd, ControlFile, sizeof(ControlFileData)) != sizeof(ControlFileData))
    	{
    		/* if write didn't set errno, assume problem is no disk space */
    		if (errno == 0)
    			errno = ENOSPC;
    		elog(PANIC, "write to control file failed: %m");
    	}
    
    	if (pg_fsync(fd) != 0)
    		elog(PANIC, "fsync of control file failed: %m");
    
    	close(fd);
    }
    
    /*
     * Initialization of shared memory for XLOG
     */
    
    int
    XLOGShmemSize(void)
    {
    	if (XLOGbuffers < MinXLOGbuffers)
    		XLOGbuffers = MinXLOGbuffers;
    
    	return MAXALIGN(sizeof(XLogCtlData) + sizeof(XLogRecPtr) * XLOGbuffers)
    		+ BLCKSZ * XLOGbuffers +
    		MAXALIGN(sizeof(ControlFileData));
    }
    
    void
    XLOGShmemInit(void)
    {
    	bool		found;
    
    	/* this must agree with space requested by XLOGShmemSize() */
    	if (XLOGbuffers < MinXLOGbuffers)
    		XLOGbuffers = MinXLOGbuffers;
    
    	XLogCtl = (XLogCtlData *)
    		ShmemInitStruct("XLOG Ctl",
    						MAXALIGN(sizeof(XLogCtlData) +
    								 sizeof(XLogRecPtr) * XLOGbuffers)
    						+ BLCKSZ * XLOGbuffers,
    						&found);
    	Assert(!found);
    	ControlFile = (ControlFileData *)
    		ShmemInitStruct("Control File", sizeof(ControlFileData), &found);
    	Assert(!found);
    
    	memset(XLogCtl, 0, sizeof(XLogCtlData));
    
    	/*
    	 * Since XLogCtlData contains XLogRecPtr fields, its sizeof should be
    	 * a multiple of the alignment for same, so no extra alignment padding
    	 * is needed here.
    	 */
    	XLogCtl->xlblocks = (XLogRecPtr *)
    		(((char *) XLogCtl) + sizeof(XLogCtlData));
    	memset(XLogCtl->xlblocks, 0, sizeof(XLogRecPtr) * XLOGbuffers);
    
    	/*
    	 * Here, on the other hand, we must MAXALIGN to ensure the page
    	 * buffers have worst-case alignment.
    	 */
    	XLogCtl->pages =
    		((char *) XLogCtl) + MAXALIGN(sizeof(XLogCtlData) +
    									  sizeof(XLogRecPtr) * XLOGbuffers);
    	memset(XLogCtl->pages, 0, BLCKSZ * XLOGbuffers);
    
    	/*
    	 * Do basic initialization of XLogCtl shared data. (StartupXLOG will
    	 * fill in additional info.)
    	 */
    	XLogCtl->XLogCacheByte = BLCKSZ * XLOGbuffers;
    	XLogCtl->XLogCacheBlck = XLOGbuffers - 1;
    	XLogCtl->Insert.currpage = (XLogPageHeader) (XLogCtl->pages);
    	SpinLockInit(&XLogCtl->info_lck);
    
    	/*
    	 * If we are not in bootstrap mode, pg_control should already exist.
    	 * Read and validate it immediately (see comments in ReadControlFile()
    	 * for the reasons why).
    	 */
    	if (!IsBootstrapProcessingMode())
    		ReadControlFile();
    }
    
    /*
     * This func must be called ONCE on system install.  It creates pg_control
     * and the initial XLOG segment.
     */
    void
    BootStrapXLOG(void)
    {
    	CheckPoint	checkPoint;
    	char	   *buffer;
    	XLogPageHeader page;
    	XLogRecord *record;
    	bool		use_existent;
    	crc64		crc;
    
    	/* Use malloc() to ensure buffer is MAXALIGNED */
    	buffer = (char *) malloc(BLCKSZ);
    	page = (XLogPageHeader) buffer;
    
    	checkPoint.redo.xlogid = 0;
    	checkPoint.redo.xrecoff = SizeOfXLogPHD;
    	checkPoint.undo = checkPoint.redo;
    	checkPoint.ThisStartUpID = 0;
    	checkPoint.nextXid = FirstNormalTransactionId;
    	checkPoint.nextOid = BootstrapObjectIdData;
    	checkPoint.time = time(NULL);
    
    	ShmemVariableCache->nextXid = checkPoint.nextXid;
    	ShmemVariableCache->nextOid = checkPoint.nextOid;
    	ShmemVariableCache->oidCount = 0;
    
    	memset(buffer, 0, BLCKSZ);
    	page->xlp_magic = XLOG_PAGE_MAGIC;
    	page->xlp_info = 0;
    	page->xlp_sui = checkPoint.ThisStartUpID;
    	page->xlp_pageaddr.xlogid = 0;
    	page->xlp_pageaddr.xrecoff = 0;
    	record = (XLogRecord *) ((char *) page + SizeOfXLogPHD);
    	record->xl_prev.xlogid = 0;
    	record->xl_prev.xrecoff = 0;
    	record->xl_xact_prev = record->xl_prev;
    	record->xl_xid = InvalidTransactionId;
    	record->xl_len = sizeof(checkPoint);
    	record->xl_info = XLOG_CHECKPOINT_SHUTDOWN;
    	record->xl_rmid = RM_XLOG_ID;
    	memcpy(XLogRecGetData(record), &checkPoint, sizeof(checkPoint));
    
    	INIT_CRC64(crc);
    	COMP_CRC64(crc, &checkPoint, sizeof(checkPoint));
    	COMP_CRC64(crc, (char *) record + sizeof(crc64),
    			   SizeOfXLogRecord - sizeof(crc64));
    	FIN_CRC64(crc);
    	record->xl_crc = crc;
    
    	use_existent = false;
    	openLogFile = XLogFileInit(0, 0, &use_existent, false);
    
    	errno = 0;
    	if (write(openLogFile, buffer, BLCKSZ) != BLCKSZ)
    	{
    		/* if write didn't set errno, assume problem is no disk space */
    		if (errno == 0)
    			errno = ENOSPC;
    		elog(PANIC, "BootStrapXLOG failed to write log file: %m");
    	}
    
    	if (pg_fsync(openLogFile) != 0)
    		elog(PANIC, "BootStrapXLOG failed to fsync log file: %m");
    
    	close(openLogFile);
    	openLogFile = -1;
    
    	memset(ControlFile, 0, sizeof(ControlFileData));
    	/* Initialize pg_control status fields */
    	ControlFile->state = DB_SHUTDOWNED;
    	ControlFile->time = checkPoint.time;
    	ControlFile->logId = 0;
    	ControlFile->logSeg = 1;
    	ControlFile->checkPoint = checkPoint.redo;
    	ControlFile->checkPointCopy = checkPoint;
    	/* some additional ControlFile fields are set in WriteControlFile() */
    
    	WriteControlFile();
    
    	/* Bootstrap the commit log, too */
    	BootStrapCLOG();
    }
    
    static char *
    str_time(time_t tnow)
    {
    	static char buf[32];
    
    	strftime(buf, sizeof(buf),
    			 "%Y-%m-%d %H:%M:%S %Z",
    			 localtime(&tnow));
    
    	return buf;
    }
    
    /*
     * This must be called ONCE during postmaster or standalone-backend startup
     */
    void
    StartupXLOG(void)
    {
    	XLogCtlInsert *Insert;
    	CheckPoint	checkPoint;
    	bool		wasShutdown;
    	XLogRecPtr	RecPtr,
    				LastRec,
    				checkPointLoc,
    				EndOfLog;
    	XLogRecord *record;
    	char	   *buffer;
    
    	/* Use malloc() to ensure record buffer is MAXALIGNED */
    	buffer = (char *) malloc(_INTL_MAXLOGRECSZ);
    
    	CritSectionCount++;
    
    	/*
    	 * Read control file and check XLOG status looks valid.
    	 *
    	 * Note: in most control paths, *ControlFile is already valid and we need
    	 * not do ReadControlFile() here, but might as well do it to be sure.
    	 */
    	ReadControlFile();
    
    	if (ControlFile->logSeg == 0 ||
    		ControlFile->state < DB_SHUTDOWNED ||
    		ControlFile->state > DB_IN_PRODUCTION ||
    		!XRecOffIsValid(ControlFile->checkPoint.xrecoff))
    		elog(PANIC, "control file context is broken");
    
    	if (ControlFile->state == DB_SHUTDOWNED)
    		elog(LOG, "database system was shut down at %s",
    			 str_time(ControlFile->time));
    	else if (ControlFile->state == DB_SHUTDOWNING)
    		elog(LOG, "database system shutdown was interrupted at %s",
    			 str_time(ControlFile->time));
    	else if (ControlFile->state == DB_IN_RECOVERY)
    		elog(LOG, "database system was interrupted being in recovery at %s\n"
    			 "\tThis probably means that some data blocks are corrupted\n"
    			 "\tand you will have to use the last backup for recovery.",
    			 str_time(ControlFile->time));
    	else if (ControlFile->state == DB_IN_PRODUCTION)
    		elog(LOG, "database system was interrupted at %s",
    			 str_time(ControlFile->time));
    
    	/* This is just to allow attaching to startup process with a debugger */
    #ifdef XLOG_REPLAY_DELAY
    	if (XLOG_DEBUG && ControlFile->state != DB_SHUTDOWNED)
    		sleep(60);
    #endif
    
    	/*
    	 * Get the last valid checkpoint record.  If the latest one according
    	 * to pg_control is broken, try the next-to-last one.
    	 */
    	record = ReadCheckpointRecord(ControlFile->checkPoint, 1, buffer);
    	if (record != NULL)
    	{
    		checkPointLoc = ControlFile->checkPoint;
    		elog(LOG, "checkpoint record is at %X/%X",
    			 checkPointLoc.xlogid, checkPointLoc.xrecoff);
    	}
    	else
    	{
    		record = ReadCheckpointRecord(ControlFile->prevCheckPoint, 2, buffer);
    		if (record != NULL)
    		{
    			checkPointLoc = ControlFile->prevCheckPoint;
    			elog(LOG, "using previous checkpoint record at %X/%X",
    				 checkPointLoc.xlogid, checkPointLoc.xrecoff);
    			InRecovery = true;	/* force recovery even if SHUTDOWNED */
    		}
    		else
    			elog(PANIC, "unable to locate a valid checkpoint record");
    	}
    	LastRec = RecPtr = checkPointLoc;
    	memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
    	wasShutdown = (record->xl_info == XLOG_CHECKPOINT_SHUTDOWN);
    
    	elog(LOG, "redo record is at %X/%X; undo record is at %X/%X; shutdown %s",
    		 checkPoint.redo.xlogid, checkPoint.redo.xrecoff,
    		 checkPoint.undo.xlogid, checkPoint.undo.xrecoff,
    		 wasShutdown ? "TRUE" : "FALSE");
    	elog(LOG, "next transaction id: %u; next oid: %u",
    		 checkPoint.nextXid, checkPoint.nextOid);
    	if (!TransactionIdIsNormal(checkPoint.nextXid))
    		elog(PANIC, "invalid next transaction id");
    
    	ShmemVariableCache->nextXid = checkPoint.nextXid;
    	ShmemVariableCache->nextOid = checkPoint.nextOid;
    	ShmemVariableCache->oidCount = 0;
    
    	ThisStartUpID = checkPoint.ThisStartUpID;
    	RedoRecPtr = XLogCtl->Insert.RedoRecPtr =
    		XLogCtl->SavedRedoRecPtr = checkPoint.redo;
    
    	if (XLByteLT(RecPtr, checkPoint.redo))
    		elog(PANIC, "invalid redo in checkpoint record");
    	if (checkPoint.undo.xrecoff == 0)
    		checkPoint.undo = RecPtr;
    
    	if (XLByteLT(checkPoint.undo, RecPtr) ||
    		XLByteLT(checkPoint.redo, RecPtr))
    	{
    		if (wasShutdown)
    			elog(PANIC, "invalid redo/undo record in shutdown checkpoint");
    		InRecovery = true;
    	}
    	else if (ControlFile->state != DB_SHUTDOWNED)
    		InRecovery = true;
    
    	/* REDO */
    	if (InRecovery)
    	{
    		int		rmid;
    
    		elog(LOG, "database system was not properly shut down; "
    			 "automatic recovery in progress");
    		ControlFile->state = DB_IN_RECOVERY;
    		ControlFile->time = time(NULL);
    		UpdateControlFile();
    
    		/* Start up the recovery environment */
    		XLogInitRelationCache();
    
    		for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
    		{
    			if (RmgrTable[rmid].rm_startup != NULL)
    				RmgrTable[rmid].rm_startup();
    		}
    
    		/* Is REDO required ? */
    		if (XLByteLT(checkPoint.redo, RecPtr))
    			record = ReadRecord(&(checkPoint.redo), PANIC, buffer);
    		else
    		{
    			/* read past CheckPoint record */
    			record = ReadRecord(NULL, LOG, buffer);
    		}
    
    		if (record != NULL)
    		{
    			InRedo = true;
    			elog(LOG, "redo starts at %X/%X",
    				 ReadRecPtr.xlogid, ReadRecPtr.xrecoff);
    			do
    			{
    				/* nextXid must be beyond record's xid */
    				if (TransactionIdFollowsOrEquals(record->xl_xid,
    											ShmemVariableCache->nextXid))
    				{
    					ShmemVariableCache->nextXid = record->xl_xid;
    					TransactionIdAdvance(ShmemVariableCache->nextXid);
    				}
    				if (XLOG_DEBUG)
    				{
    					char		buf[8192];
    
    					sprintf(buf, "REDO @ %X/%X; LSN %X/%X: ",
    							ReadRecPtr.xlogid, ReadRecPtr.xrecoff,
    							EndRecPtr.xlogid, EndRecPtr.xrecoff);
    					xlog_outrec(buf, record);
    					strcat(buf, " - ");
    					RmgrTable[record->xl_rmid].rm_desc(buf,
    								record->xl_info, XLogRecGetData(record));
    					elog(LOG, "%s", buf);
    				}
    
    				if (record->xl_info & XLR_BKP_BLOCK_MASK)
    					RestoreBkpBlocks(record, EndRecPtr);
    
    				RmgrTable[record->xl_rmid].rm_redo(EndRecPtr, record);
    				record = ReadRecord(NULL, LOG, buffer);
    			} while (record != NULL);
    			elog(LOG, "redo done at %X/%X",
    				 ReadRecPtr.xlogid, ReadRecPtr.xrecoff);
    			LastRec = ReadRecPtr;
    			InRedo = false;
    		}
    		else
    			elog(LOG, "redo is not required");
    	}
    
    	/*
    	 * Init xlog buffer cache using the block containing the last valid
    	 * record from the previous incarnation.
    	 */
    	record = ReadRecord(&LastRec, PANIC, buffer);
    	EndOfLog = EndRecPtr;
    	XLByteToPrevSeg(EndOfLog, openLogId, openLogSeg);
    	openLogFile = XLogFileOpen(openLogId, openLogSeg, false);
    	openLogOff = 0;
    	ControlFile->logId = openLogId;
    	ControlFile->logSeg = openLogSeg + 1;
    	Insert = &XLogCtl->Insert;
    	Insert->PrevRecord = LastRec;
    
    	/*
    	 * If the next record will go to the new page then initialize for that
    	 * one.
    	 */
    	if ((BLCKSZ - EndOfLog.xrecoff % BLCKSZ) < SizeOfXLogRecord)
    		EndOfLog.xrecoff += (BLCKSZ - EndOfLog.xrecoff % BLCKSZ);
    	if (EndOfLog.xrecoff % BLCKSZ == 0)
    	{
    		XLogRecPtr	NewPageEndPtr;
    
    		NewPageEndPtr = EndOfLog;
    		if (NewPageEndPtr.xrecoff >= XLogFileSize)
    		{
    			/* crossing a logid boundary */
    			NewPageEndPtr.xlogid += 1;
    			NewPageEndPtr.xrecoff = BLCKSZ;
    		}
    		else
    			NewPageEndPtr.xrecoff += BLCKSZ;
    		XLogCtl->xlblocks[0] = NewPageEndPtr;
    		Insert->currpage->xlp_magic = XLOG_PAGE_MAGIC;
    		if (InRecovery)
    			Insert->currpage->xlp_sui = ThisStartUpID;
    		else
    			Insert->currpage->xlp_sui = ThisStartUpID + 1;
    		Insert->currpage->xlp_pageaddr.xlogid = NewPageEndPtr.xlogid;
    		Insert->currpage->xlp_pageaddr.xrecoff = NewPageEndPtr.xrecoff - BLCKSZ;
    		/* rest of buffer was zeroed in XLOGShmemInit */
    		Insert->currpos = (char *) Insert->currpage + SizeOfXLogPHD;
    	}
    	else
    	{
    		XLogCtl->xlblocks[0].xlogid = openLogId;
    		XLogCtl->xlblocks[0].xrecoff =
    			((EndOfLog.xrecoff - 1) / BLCKSZ + 1) * BLCKSZ;
    
    		/*
    		 * Tricky point here: readBuf contains the *last* block that the
    		 * LastRec record spans, not the one it starts in.	The last block
    		 * is indeed the one we want to use.
    		 */
    		Assert(readOff == (XLogCtl->xlblocks[0].xrecoff - BLCKSZ) % XLogSegSize);
    		memcpy((char *) Insert->currpage, readBuf, BLCKSZ);
    		Insert->currpos = (char *) Insert->currpage +
    			(EndOfLog.xrecoff + BLCKSZ - XLogCtl->xlblocks[0].xrecoff);
    		/* Make sure rest of page is zero */
    		memset(Insert->currpos, 0, INSERT_FREESPACE(Insert));
    	}
    
    	LogwrtResult.Write = LogwrtResult.Flush = EndOfLog;
    
    	XLogCtl->Write.LogwrtResult = LogwrtResult;
    	Insert->LogwrtResult = LogwrtResult;
    	XLogCtl->LogwrtResult = LogwrtResult;
    
    	XLogCtl->LogwrtRqst.Write = EndOfLog;
    	XLogCtl->LogwrtRqst.Flush = EndOfLog;
    
    #ifdef NOT_USED
    	/* UNDO */
    	if (InRecovery)
    	{
    		RecPtr = ReadRecPtr;
    		if (XLByteLT(checkPoint.undo, RecPtr))
    		{
    			elog(LOG, "undo starts at %X/%X",
    				 RecPtr.xlogid, RecPtr.xrecoff);
    			do
    			{
    				record = ReadRecord(&RecPtr, PANIC, buffer);
    				if (TransactionIdIsValid(record->xl_xid) &&
    					!TransactionIdDidCommit(record->xl_xid))
    					RmgrTable[record->xl_rmid].rm_undo(EndRecPtr, record);
    				RecPtr = record->xl_prev;
    			} while (XLByteLE(checkPoint.undo, RecPtr));
    			elog(LOG, "undo done at %X/%X",
    				 ReadRecPtr.xlogid, ReadRecPtr.xrecoff);
    		}
    		else
    			elog(LOG, "undo is not required");
    	}
    #endif
    
    	if (InRecovery)
    	{
    		int		rmid;
    
    		/*
    		 * Allow resource managers to do any required cleanup.
    		 */
    		for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
    		{
    			if (RmgrTable[rmid].rm_cleanup != NULL)
    				RmgrTable[rmid].rm_cleanup();
    		}
    
    		/* suppress in-transaction check in CreateCheckPoint */
    		MyLastRecPtr.xrecoff = 0;
    		MyXactMadeXLogEntry = false;
    		MyXactMadeTempRelUpdate = false;
    
    		/*
    		 * Perform a new checkpoint to update our recovery activity to disk.
    		 *
    		 * In case we had to use the secondary checkpoint, make sure that
    		 * it will still be shown as the secondary checkpoint after this
    		 * CreateCheckPoint operation; we don't want the broken primary
    		 * checkpoint to become prevCheckPoint...
    		 */
    		ControlFile->checkPoint = checkPointLoc;
    		CreateCheckPoint(true, true);
    
    		/*
    		 * Close down recovery environment
    		 */
    		XLogCloseRelationCache();
    	}
    
    	/*
    	 * Preallocate additional log files, if wanted.
    	 */
    	PreallocXlogFiles(EndOfLog);
    
    	InRecovery = false;
    
    	ControlFile->state = DB_IN_PRODUCTION;
    	ControlFile->time = time(NULL);
    	UpdateControlFile();
    
    	ThisStartUpID++;
    	XLogCtl->ThisStartUpID = ThisStartUpID;
    
    	/* Start up the commit log, too */
    	StartupCLOG();
    
    	elog(LOG, "database system is ready");
    	CritSectionCount--;
    
    	/* Shut down readFile facility, free space */
    	if (readFile >= 0)
    	{
    		close(readFile);
    		readFile = -1;
    	}
    	if (readBuf)
    	{
    		free(readBuf);
    		readBuf = NULL;
    	}
    
    	free(buffer);
    }
    
    /*
     * Subroutine to try to fetch and validate a prior checkpoint record.
     * whichChkpt = 1 for "primary", 2 for "secondary", merely informative
     */
    static XLogRecord *
    ReadCheckpointRecord(XLogRecPtr RecPtr,
    					 int whichChkpt,
    					 char *buffer)
    {
    	XLogRecord *record;
    
    	if (!XRecOffIsValid(RecPtr.xrecoff))
    	{
    		elog(LOG, (whichChkpt == 1 ?
    				   "invalid primary checkpoint link in control file" :
    				   "invalid secondary checkpoint link in control file"));
    		return NULL;
    	}
    
    	record = ReadRecord(&RecPtr, LOG, buffer);
    
    	if (record == NULL)
    	{
    		elog(LOG, (whichChkpt == 1 ?
    				   "invalid primary checkpoint record" :
    				   "invalid secondary checkpoint record"));
    		return NULL;
    	}
    	if (record->xl_rmid != RM_XLOG_ID)
    	{
    		elog(LOG, (whichChkpt == 1 ?
    			 "invalid resource manager id in primary checkpoint record" :
    		  "invalid resource manager id in secondary checkpoint record"));
    		return NULL;
    	}
    	if (record->xl_info != XLOG_CHECKPOINT_SHUTDOWN &&
    		record->xl_info != XLOG_CHECKPOINT_ONLINE)
    	{
    		elog(LOG, (whichChkpt == 1 ?
    				   "invalid xl_info in primary checkpoint record" :
    				   "invalid xl_info in secondary checkpoint record"));
    		return NULL;
    	}
    	if (record->xl_len != sizeof(CheckPoint))
    	{
    		elog(LOG, (whichChkpt == 1 ?
    				   "invalid length of primary checkpoint record" :
    				   "invalid length of secondary checkpoint record"));
    		return NULL;
    	}
    	return record;
    }
    
    /*
     * Postmaster uses this to initialize ThisStartUpID & RedoRecPtr from
     * XLogCtlData located in shmem after successful startup.
     */
    void
    SetThisStartUpID(void)
    {
    	ThisStartUpID = XLogCtl->ThisStartUpID;
    	RedoRecPtr = XLogCtl->SavedRedoRecPtr;
    }
    
    /*
     * CheckPoint process called by postmaster saves copy of new RedoRecPtr
     * in shmem (using SetSavedRedoRecPtr).  When checkpointer completes,
     * postmaster calls GetSavedRedoRecPtr to update its own copy of RedoRecPtr,
     * so that subsequently-spawned backends will start out with a reasonably
     * up-to-date local RedoRecPtr.  Since these operations are not protected by
     * any lock and copying an XLogRecPtr isn't atomic, it's unsafe to use either
     * of these routines at other times!
     */
    void
    SetSavedRedoRecPtr(void)
    {
    	XLogCtl->SavedRedoRecPtr = RedoRecPtr;
    }
    
    void
    GetSavedRedoRecPtr(void)
    {
    	RedoRecPtr = XLogCtl->SavedRedoRecPtr;
    }
    
    /*
     * Once spawned, a backend may update its local RedoRecPtr from
     * XLogCtl->Insert.RedoRecPtr; it must hold the insert lock or info_lck
     * to do so.  This is done in XLogInsert() or GetRedoRecPtr().
     */
    XLogRecPtr
    GetRedoRecPtr(void)
    {
    	/* use volatile pointer to prevent code rearrangement */
    	volatile XLogCtlData *xlogctl = XLogCtl;
    
    	SpinLockAcquire_NoHoldoff(&xlogctl->info_lck);
    	Assert(XLByteLE(RedoRecPtr, xlogctl->Insert.RedoRecPtr));
    	RedoRecPtr = xlogctl->Insert.RedoRecPtr;
    	SpinLockRelease_NoHoldoff(&xlogctl->info_lck);
    
    	return RedoRecPtr;
    }
    
    /*
     * This must be called ONCE during postmaster or standalone-backend shutdown
     */
    void
    ShutdownXLOG(void)
    {
    	elog(LOG, "shutting down");
    
    	/* suppress in-transaction check in CreateCheckPoint */
    	MyLastRecPtr.xrecoff = 0;
    	MyXactMadeXLogEntry = false;
    	MyXactMadeTempRelUpdate = false;
    
    	CritSectionCount++;
    	CreateDummyCaches();
    	CreateCheckPoint(true, true);
    	ShutdownCLOG();
    	CritSectionCount--;
    
    	elog(LOG, "database system is shut down");
    }
    
    /*
     * Perform a checkpoint --- either during shutdown, or on-the-fly
     *
     * If force is true, we force a checkpoint regardless of whether any XLOG
     * activity has occurred since the last one.
     */
    void
    CreateCheckPoint(bool shutdown, bool force)
    {
    	CheckPoint	checkPoint;
    	XLogRecPtr	recptr;
    	XLogCtlInsert *Insert = &XLogCtl->Insert;
    	XLogRecData rdata;
    	uint32		freespace;
    	uint32		_logId;
    	uint32		_logSeg;
    
    	if (MyXactMadeXLogEntry)
    		elog(ERROR, "CreateCheckPoint: cannot be called inside transaction block");
    
    	/*
    	 * Acquire CheckpointLock to ensure only one checkpoint happens at a time.
    	 *
    	 * The CheckpointLock can be held for quite a while, which is not good
    	 * because we won't respond to a cancel/die request while waiting for
    	 * an LWLock.  (But the alternative of using a regular lock won't work
    	 * for background checkpoint processes, which are not regular
    	 * backends.)  So, rather than use a plain LWLockAcquire, use this
    	 * kluge to allow an interrupt to be accepted while we are waiting:
    	 */
    	while (!LWLockConditionalAcquire(CheckpointLock, LW_EXCLUSIVE))
    	{
    		CHECK_FOR_INTERRUPTS();
    		sleep(1);
    	}
    
    	/*
    	 * Use a critical section to force system panic if we have trouble.
    	 */
    	START_CRIT_SECTION();
    
    	if (shutdown)
    	{
    		ControlFile->state = DB_SHUTDOWNING;
    		ControlFile->time = time(NULL);
    		UpdateControlFile();
    	}
    
    	memset(&checkPoint, 0, sizeof(checkPoint));
    	checkPoint.ThisStartUpID = ThisStartUpID;
    	checkPoint.time = time(NULL);
    
    	LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
    
    	/*
    	 * If this isn't a shutdown or forced checkpoint, and we have not inserted
    	 * any XLOG records since the start of the last checkpoint, skip the
    	 * checkpoint.  The idea here is to avoid inserting duplicate checkpoints
    	 * when the system is idle. That wastes log space, and more importantly it
    	 * exposes us to possible loss of both current and previous checkpoint
    	 * records if the machine crashes just as we're writing the update.
    	 * (Perhaps it'd make even more sense to checkpoint only when the previous
    	 * checkpoint record is in a different xlog page?)
    	 *
    	 * We have to make two tests to determine that nothing has happened since
    	 * the start of the last checkpoint: current insertion point must
    	 * match the end of the last checkpoint record, and its redo pointer
    	 * must point to itself.
    	 */
    	if (!shutdown && !force)
    	{
    		XLogRecPtr	curInsert;
    
    		INSERT_RECPTR(curInsert, Insert, Insert->curridx);
    		if (curInsert.xlogid == ControlFile->checkPoint.xlogid &&
    			curInsert.xrecoff == ControlFile->checkPoint.xrecoff +
    			MAXALIGN(SizeOfXLogRecord + sizeof(CheckPoint)) &&
    			ControlFile->checkPoint.xlogid ==
    			ControlFile->checkPointCopy.redo.xlogid &&
    			ControlFile->checkPoint.xrecoff ==
    			ControlFile->checkPointCopy.redo.xrecoff)
    		{
    			LWLockRelease(WALInsertLock);
    			LWLockRelease(CheckpointLock);
    			END_CRIT_SECTION();
    			return;
    		}
    	}
    
    	/*
    	 * Compute new REDO record ptr = location of next XLOG record.
    	 *
    	 * NB: this is NOT necessarily where the checkpoint record itself will
    	 * be, since other backends may insert more XLOG records while we're
    	 * off doing the buffer flush work.  Those XLOG records are logically
    	 * after the checkpoint, even though physically before it.	Got that?
    	 */
    	freespace = INSERT_FREESPACE(Insert);
    	if (freespace < SizeOfXLogRecord)
    	{
    		(void) AdvanceXLInsertBuffer();
    		/* OK to ignore update return flag, since we will do flush anyway */
    		freespace = BLCKSZ - SizeOfXLogPHD;
    	}
    	INSERT_RECPTR(checkPoint.redo, Insert, Insert->curridx);
    
    	/*
    	 * Here we update the shared RedoRecPtr for future XLogInsert calls;
    	 * this must be done while holding the insert lock AND the info_lck.
    	 *
    	 * Note: if we fail to complete the checkpoint, RedoRecPtr will be
    	 * left pointing past where it really needs to point.  This is okay;
    	 * the only consequence is that XLogInsert might back up whole buffers
    	 * that it didn't really need to.  We can't postpone advancing RedoRecPtr
    	 * because XLogInserts that happen while we are dumping buffers must
    	 * assume that their buffer changes are not included in the checkpoint.
    	 */
    	{
    		/* use volatile pointer to prevent code rearrangement */
    		volatile XLogCtlData *xlogctl = XLogCtl;
    
    		SpinLockAcquire_NoHoldoff(&xlogctl->info_lck);
    		RedoRecPtr = xlogctl->Insert.RedoRecPtr = checkPoint.redo;
    		SpinLockRelease_NoHoldoff(&xlogctl->info_lck);
    	}
    
    	/*
    	 * Get UNDO record ptr - this is oldest of PGPROC->logRec values. We
    	 * do this while holding insert lock to ensure that we won't miss any
    	 * about-to-commit transactions (UNDO must include all xacts that have
    	 * commits after REDO point).
    	 *
    	 * XXX temporarily ifdef'd out to avoid three-way deadlock condition:
    	 * GetUndoRecPtr needs to grab SInvalLock to ensure that it is looking
    	 * at a stable set of proc records, but grabbing SInvalLock while
    	 * holding WALInsertLock is no good.  GetNewTransactionId may cause a
    	 * WAL record to be written while holding XidGenLock, and
    	 * GetSnapshotData needs to get XidGenLock while holding SInvalLock,
    	 * so there's a risk of deadlock. Need to find a better solution.  See
    	 * pgsql-hackers discussion of 17-Dec-01.
    	 */
    #ifdef NOT_USED
    	checkPoint.undo = GetUndoRecPtr();
    
    	if (shutdown && checkPoint.undo.xrecoff != 0)
    		elog(PANIC, "active transaction while database system is shutting down");
    #endif
    
    	/*
    	 * Now we can release insert lock, allowing other xacts to proceed
    	 * even while we are flushing disk buffers.
    	 */
    	LWLockRelease(WALInsertLock);
    
    	/*
    	 * Get the other info we need for the checkpoint record.
    	 */
    	LWLockAcquire(XidGenLock, LW_SHARED);
    	checkPoint.nextXid = ShmemVariableCache->nextXid;
    	LWLockRelease(XidGenLock);
    
    	LWLockAcquire(OidGenLock, LW_SHARED);
    	checkPoint.nextOid = ShmemVariableCache->nextOid;
    	if (!shutdown)
    		checkPoint.nextOid += ShmemVariableCache->oidCount;
    	LWLockRelease(OidGenLock);
    
    	/*
    	 * Having constructed the checkpoint record, ensure all shmem disk
    	 * buffers and commit-log buffers are flushed to disk.
    	 *
    	 * This I/O could fail for various reasons.  If so, we will fail to
    	 * complete the checkpoint, but there is no reason to force a system
    	 * panic.  Accordingly, exit critical section while doing it.
    	 */
    	END_CRIT_SECTION();
    
    	CheckPointCLOG();
    	FlushBufferPool();
    
    	START_CRIT_SECTION();
    
    	/*
    	 * Now insert the checkpoint record into XLOG.
    	 */
    	rdata.buffer = InvalidBuffer;
    	rdata.data = (char *) (&checkPoint);
    	rdata.len = sizeof(checkPoint);
    	rdata.next = NULL;
    
    	recptr = XLogInsert(RM_XLOG_ID,
    						shutdown ? XLOG_CHECKPOINT_SHUTDOWN :
    						XLOG_CHECKPOINT_ONLINE,
    						&rdata);
    
    	XLogFlush(recptr);
    
    	/*
    	 * We now have ProcLastRecPtr = start of actual checkpoint record,
    	 * recptr = end of actual checkpoint record.
    	 */
    	if (shutdown && !XLByteEQ(checkPoint.redo, ProcLastRecPtr))
    		elog(PANIC, "concurrent transaction log activity while database system is shutting down");
    
    	/*
    	 * Select point at which we can truncate the log, which we base on the
    	 * prior checkpoint's earliest info.
    	 *
    	 * With UNDO support: oldest item is redo or undo, whichever is older;
    	 * but watch out for case that undo = 0.
    	 *
    	 * Without UNDO support: just use the redo pointer.  This allows xlog
    	 * space to be freed much faster when there are long-running
    	 * transactions.
    	 */
    #ifdef NOT_USED
    	if (ControlFile->checkPointCopy.undo.xrecoff != 0 &&
    		XLByteLT(ControlFile->checkPointCopy.undo,
    				 ControlFile->checkPointCopy.redo))
    		XLByteToSeg(ControlFile->checkPointCopy.undo, _logId, _logSeg);
    	else
    #endif
    		XLByteToSeg(ControlFile->checkPointCopy.redo, _logId, _logSeg);
    
    	/*
    	 * Update the control file.
    	 */
    	LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
    	if (shutdown)
    		ControlFile->state = DB_SHUTDOWNED;
    	ControlFile->prevCheckPoint = ControlFile->checkPoint;
    	ControlFile->checkPoint = ProcLastRecPtr;
    	ControlFile->checkPointCopy = checkPoint;
    	ControlFile->time = time(NULL);
    	UpdateControlFile();
    	LWLockRelease(ControlFileLock);
    
    	/*
    	 * We are now done with critical updates; no need for system panic if
    	 * we have trouble while fooling with offline log segments.
    	 */
    	END_CRIT_SECTION();
    
    	/*
    	 * Delete offline log files (those no longer needed even for previous
    	 * checkpoint).
    	 */
    	if (_logId || _logSeg)
    	{
    		PrevLogSeg(_logId, _logSeg);
    		MoveOfflineLogs(_logId, _logSeg, recptr);
    	}
    
    	/*
    	 * Make more log segments if needed.  (Do this after deleting offline
    	 * log segments, to avoid having peak disk space usage higher than
    	 * necessary.)
    	 */
    	if (!shutdown)
    		PreallocXlogFiles(recptr);
    
    	LWLockRelease(CheckpointLock);
    }
    
    /*
     * Write a NEXTOID log record
     */
    void
    XLogPutNextOid(Oid nextOid)
    {
    	XLogRecData rdata;
    
    	rdata.buffer = InvalidBuffer;
    	rdata.data = (char *) (&nextOid);
    	rdata.len = sizeof(Oid);
    	rdata.next = NULL;
    	(void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID, &rdata);
    }
    
    /*
     * XLOG resource manager's routines
     */
    void
    xlog_redo(XLogRecPtr lsn, XLogRecord *record)
    {
    	uint8		info = record->xl_info & ~XLR_INFO_MASK;
    
    	if (info == XLOG_NEXTOID)
    	{
    		Oid			nextOid;
    
    		memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid));
    		if (ShmemVariableCache->nextOid < nextOid)
    		{
    			ShmemVariableCache->nextOid = nextOid;
    			ShmemVariableCache->oidCount = 0;
    		}
    	}
    	else if (info == XLOG_CHECKPOINT_SHUTDOWN)
    	{
    		CheckPoint	checkPoint;
    
    		memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
    		/* In a SHUTDOWN checkpoint, believe the counters exactly */
    		ShmemVariableCache->nextXid = checkPoint.nextXid;
    		ShmemVariableCache->nextOid = checkPoint.nextOid;
    		ShmemVariableCache->oidCount = 0;
    	}
    	else if (info == XLOG_CHECKPOINT_ONLINE)
    	{
    		CheckPoint	checkPoint;
    
    		memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
    		/* In an ONLINE checkpoint, treat the counters like NEXTOID */
    		if (TransactionIdPrecedes(ShmemVariableCache->nextXid,
    								  checkPoint.nextXid))
    			ShmemVariableCache->nextXid = checkPoint.nextXid;
    		if (ShmemVariableCache->nextOid < checkPoint.nextOid)
    		{
    			ShmemVariableCache->nextOid = checkPoint.nextOid;
    			ShmemVariableCache->oidCount = 0;
    		}
    	}
    }
    
    void
    xlog_undo(XLogRecPtr lsn, XLogRecord *record)
    {
    }
    
    void
    xlog_desc(char *buf, uint8 xl_info, char *rec)
    {
    	uint8		info = xl_info & ~XLR_INFO_MASK;
    
    	if (info == XLOG_CHECKPOINT_SHUTDOWN ||
    		info == XLOG_CHECKPOINT_ONLINE)
    	{
    		CheckPoint *checkpoint = (CheckPoint *) rec;
    
    		sprintf(buf + strlen(buf), "checkpoint: redo %X/%X; undo %X/%X; "
    				"sui %u; xid %u; oid %u; %s",
    				checkpoint->redo.xlogid, checkpoint->redo.xrecoff,
    				checkpoint->undo.xlogid, checkpoint->undo.xrecoff,
    				checkpoint->ThisStartUpID, checkpoint->nextXid,
    				checkpoint->nextOid,
    			 (info == XLOG_CHECKPOINT_SHUTDOWN) ? "shutdown" : "online");
    	}
    	else if (info == XLOG_NEXTOID)
    	{
    		Oid			nextOid;
    
    		memcpy(&nextOid, rec, sizeof(Oid));
    		sprintf(buf + strlen(buf), "nextOid: %u", nextOid);
    	}
    	else
    		strcat(buf, "UNKNOWN");
    }
    
    static void
    xlog_outrec(char *buf, XLogRecord *record)
    {
    	int			bkpb;
    	int			i;
    
    	sprintf(buf + strlen(buf), "prev %X/%X; xprev %X/%X; xid %u",
    			record->xl_prev.xlogid, record->xl_prev.xrecoff,
    			record->xl_xact_prev.xlogid, record->xl_xact_prev.xrecoff,
    			record->xl_xid);
    
    	for (i = 0, bkpb = 0; i < XLR_MAX_BKP_BLOCKS; i++)
    	{
    		if (!(record->xl_info & (XLR_SET_BKP_BLOCK(i))))
    			continue;
    		bkpb++;
    	}
    
    	if (bkpb)
    		sprintf(buf + strlen(buf), "; bkpb %d", bkpb);
    
    	sprintf(buf + strlen(buf), ": %s",
    			RmgrTable[record->xl_rmid].rm_name);
    }
    
    
    /*
     * GUC support
     */
    const char *
    assign_xlog_sync_method(const char *method, bool doit, bool interactive)
    {
    	int			new_sync_method;
    	int			new_sync_bit;
    
    	if (strcasecmp(method, "fsync") == 0)
    	{
    		new_sync_method = SYNC_METHOD_FSYNC;
    		new_sync_bit = 0;
    	}
    #ifdef HAVE_FDATASYNC
    	else if (strcasecmp(method, "fdatasync") == 0)
    	{
    		new_sync_method = SYNC_METHOD_FDATASYNC;
    		new_sync_bit = 0;
    	}
    #endif
    #ifdef OPEN_SYNC_FLAG
    	else if (strcasecmp(method, "open_sync") == 0)
    	{
    		new_sync_method = SYNC_METHOD_OPEN;
    		new_sync_bit = OPEN_SYNC_FLAG;
    	}
    #endif
    #ifdef OPEN_DATASYNC_FLAG
    	else if (strcasecmp(method, "open_datasync") == 0)
    	{
    		new_sync_method = SYNC_METHOD_OPEN;
    		new_sync_bit = OPEN_DATASYNC_FLAG;
    	}
    #endif
    	else
    		return NULL;
    
    	if (!doit)
    		return method;
    
    	if (sync_method != new_sync_method || open_sync_bit != new_sync_bit)
    	{
    		/*
    		 * To ensure that no blocks escape unsynced, force an fsync on the
    		 * currently open log segment (if any).  Also, if the open flag is
    		 * changing, close the log file so it will be reopened (with new
    		 * flag bit) at next use.
    		 */
    		if (openLogFile >= 0)
    		{
    			if (pg_fsync(openLogFile) != 0)
    				elog(PANIC, "fsync of log file %u, segment %u failed: %m",
    					 openLogId, openLogSeg);
    			if (open_sync_bit != new_sync_bit)
    			{
    				if (close(openLogFile) != 0)
    					elog(PANIC, "close of log file %u, segment %u failed: %m",
    						 openLogId, openLogSeg);
    				openLogFile = -1;
    			}
    		}
    		sync_method = new_sync_method;
    		open_sync_bit = new_sync_bit;
    	}
    
    	return method;
    }
    
    
    /*
     * Issue appropriate kind of fsync (if any) on the current XLOG output file
     */
    static void
    issue_xlog_fsync(void)
    {
    	switch (sync_method)
    	{
    		case SYNC_METHOD_FSYNC:
    			if (pg_fsync(openLogFile) != 0)
    				elog(PANIC, "fsync of log file %u, segment %u failed: %m",
    					 openLogId, openLogSeg);
    			break;
    #ifdef HAVE_FDATASYNC
    		case SYNC_METHOD_FDATASYNC:
    			if (pg_fdatasync(openLogFile) != 0)
    				elog(PANIC, "fdatasync of log file %u, segment %u failed: %m",
    					 openLogId, openLogSeg);
    			break;
    #endif
    		case SYNC_METHOD_OPEN:
    			/* write synced it already */
    			break;
    		default:
    			elog(PANIC, "bogus wal_sync_method %d", sync_method);
    			break;
    	}
    }