Skip to content
Snippets Groups Projects
Select Git revision
  • benchmark-tools
  • postgres-lambda
  • master default
  • REL9_4_25
  • REL9_5_20
  • REL9_6_16
  • REL_10_11
  • REL_11_6
  • REL_12_1
  • REL_12_0
  • REL_12_RC1
  • REL_12_BETA4
  • REL9_4_24
  • REL9_5_19
  • REL9_6_15
  • REL_10_10
  • REL_11_5
  • REL_12_BETA3
  • REL9_4_23
  • REL9_5_18
  • REL9_6_14
  • REL_10_9
  • REL_11_4
23 results

parse_expr.c

Blame
  • parse_expr.c 50.35 KiB
    /*-------------------------------------------------------------------------
     *
     * parse_expr.c
     *	  handle expressions in parser
     *
     * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
     * Portions Copyright (c) 1994, Regents of the University of California
     *
     *
     * IDENTIFICATION
     *	  $PostgreSQL: pgsql/src/backend/parser/parse_expr.c,v 1.186 2005/11/18 23:08:00 tgl Exp $
     *
     *-------------------------------------------------------------------------
     */
    
    #include "postgres.h"
    
    #include "catalog/pg_operator.h"
    #include "catalog/pg_proc.h"
    #include "commands/dbcommands.h"
    #include "mb/pg_wchar.h"
    #include "miscadmin.h"
    #include "nodes/makefuncs.h"
    #include "nodes/params.h"
    #include "nodes/plannodes.h"
    #include "parser/analyze.h"
    #include "parser/gramparse.h"
    #include "parser/parse_coerce.h"
    #include "parser/parse_expr.h"
    #include "parser/parse_func.h"
    #include "parser/parse_oper.h"
    #include "parser/parse_relation.h"
    #include "parser/parse_type.h"
    #include "utils/builtins.h"
    #include "utils/lsyscache.h"
    #include "utils/syscache.h"
    
    bool		Transform_null_equals = false;
    
    static Node *transformParamRef(ParseState *pstate, ParamRef *pref);
    static Node *transformAExprOp(ParseState *pstate, A_Expr *a);
    static Node *transformAExprAnd(ParseState *pstate, A_Expr *a);
    static Node *transformAExprOr(ParseState *pstate, A_Expr *a);
    static Node *transformAExprNot(ParseState *pstate, A_Expr *a);
    static Node *transformAExprOpAny(ParseState *pstate, A_Expr *a);
    static Node *transformAExprOpAll(ParseState *pstate, A_Expr *a);
    static Node *transformAExprDistinct(ParseState *pstate, A_Expr *a);
    static Node *transformAExprNullIf(ParseState *pstate, A_Expr *a);
    static Node *transformAExprOf(ParseState *pstate, A_Expr *a);
    static Node *transformFuncCall(ParseState *pstate, FuncCall *fn);
    static Node *transformCaseExpr(ParseState *pstate, CaseExpr *c);
    static Node *transformSubLink(ParseState *pstate, SubLink *sublink);
    static Node *transformArrayExpr(ParseState *pstate, ArrayExpr *a);
    static Node *transformRowExpr(ParseState *pstate, RowExpr *r);
    static Node *transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c);
    static Node *transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m);
    static Node *transformBooleanTest(ParseState *pstate, BooleanTest *b);
    static Node *transformColumnRef(ParseState *pstate, ColumnRef *cref);
    static Node *transformWholeRowRef(ParseState *pstate, char *schemaname,
    					 char *relname);
    static Node *transformBooleanTest(ParseState *pstate, BooleanTest *b);
    static Node *transformIndirection(ParseState *pstate, Node *basenode,
    					 List *indirection);
    static Node *typecast_expression(ParseState *pstate, Node *expr,
    					TypeName *typename);
    static Node *make_row_op(ParseState *pstate, List *opname,
    			Node *ltree, Node *rtree);
    static Node *make_row_distinct_op(ParseState *pstate, List *opname,
    					 Node *ltree, Node *rtree);
    static Expr *make_distinct_op(ParseState *pstate, List *opname,
    				 Node *ltree, Node *rtree);
    
    
    /*
     * transformExpr -
     *	  Analyze and transform expressions. Type checking and type casting is
     *	  done here. The optimizer and the executor cannot handle the original
     *	  (raw) expressions collected by the parse tree. Hence the transformation
     *	  here.
     *
     * NOTE: there are various cases in which this routine will get applied to
     * an already-transformed expression.  Some examples:
     *	1. At least one construct (BETWEEN/AND) puts the same nodes
     *	into two branches of the parse tree; hence, some nodes
     *	are transformed twice.
     *	2. Another way it can happen is that coercion of an operator or
     *	function argument to the required type (via coerce_type())
     *	can apply transformExpr to an already-transformed subexpression.
     *	An example here is "SELECT count(*) + 1.0 FROM table".
     * While it might be possible to eliminate these cases, the path of
     * least resistance so far has been to ensure that transformExpr() does
     * no damage if applied to an already-transformed tree.  This is pretty
     * easy for cases where the transformation replaces one node type with
     * another, such as A_Const => Const; we just do nothing when handed
     * a Const.  More care is needed for node types that are used as both
     * input and output of transformExpr; see SubLink for example.
     */
    Node *
    transformExpr(ParseState *pstate, Node *expr)
    {
    	Node	   *result = NULL;
    
    	if (expr == NULL)
    		return NULL;
    
    	/* Guard against stack overflow due to overly complex expressions */
    	check_stack_depth();
    
    	switch (nodeTag(expr))
    	{
    		case T_ColumnRef:
    			result = transformColumnRef(pstate, (ColumnRef *) expr);
    			break;
    
    		case T_ParamRef:
    			result = transformParamRef(pstate, (ParamRef *) expr);
    			break;
    
    		case T_A_Const:
    			{
    				A_Const    *con = (A_Const *) expr;
    				Value	   *val = &con->val;
    
    				result = (Node *) make_const(val);
    				if (con->typename != NULL)
    					result = typecast_expression(pstate, result,
    												 con->typename);
    				break;
    			}
    
    		case T_A_Indirection:
    			{
    				A_Indirection *ind = (A_Indirection *) expr;
    
    				result = transformExpr(pstate, ind->arg);
    				result = transformIndirection(pstate, result,
    											  ind->indirection);
    				break;
    			}
    
    		case T_TypeCast:
    			{
    				TypeCast   *tc = (TypeCast *) expr;
    				Node	   *arg = transformExpr(pstate, tc->arg);
    
    				result = typecast_expression(pstate, arg, tc->typename);
    				break;
    			}
    
    		case T_A_Expr:
    			{
    				A_Expr	   *a = (A_Expr *) expr;
    
    				switch (a->kind)
    				{
    					case AEXPR_OP:
    						result = transformAExprOp(pstate, a);
    						break;
    					case AEXPR_AND:
    						result = transformAExprAnd(pstate, a);
    						break;
    					case AEXPR_OR:
    						result = transformAExprOr(pstate, a);
    						break;
    					case AEXPR_NOT:
    						result = transformAExprNot(pstate, a);
    						break;
    					case AEXPR_OP_ANY:
    						result = transformAExprOpAny(pstate, a);
    						break;
    					case AEXPR_OP_ALL:
    						result = transformAExprOpAll(pstate, a);
    						break;
    					case AEXPR_DISTINCT:
    						result = transformAExprDistinct(pstate, a);
    						break;
    					case AEXPR_NULLIF:
    						result = transformAExprNullIf(pstate, a);
    						break;
    					case AEXPR_OF:
    						result = transformAExprOf(pstate, a);
    						break;
    					default:
    						elog(ERROR, "unrecognized A_Expr kind: %d", a->kind);
    				}
    				break;
    			}
    
    		case T_FuncCall:
    			result = transformFuncCall(pstate, (FuncCall *) expr);
    			break;
    
    		case T_SubLink:
    			result = transformSubLink(pstate, (SubLink *) expr);
    			break;
    
    		case T_CaseExpr:
    			result = transformCaseExpr(pstate, (CaseExpr *) expr);
    			break;
    
    		case T_ArrayExpr:
    			result = transformArrayExpr(pstate, (ArrayExpr *) expr);
    			break;
    
    		case T_RowExpr:
    			result = transformRowExpr(pstate, (RowExpr *) expr);
    			break;
    
    		case T_CoalesceExpr:
    			result = transformCoalesceExpr(pstate, (CoalesceExpr *) expr);
    			break;
    
    		case T_MinMaxExpr:
    			result = transformMinMaxExpr(pstate, (MinMaxExpr *) expr);
    			break;
    
    		case T_NullTest:
    			{
    				NullTest   *n = (NullTest *) expr;
    
    				n->arg = (Expr *) transformExpr(pstate, (Node *) n->arg);
    				/* the argument can be any type, so don't coerce it */
    				result = expr;
    				break;
    			}
    
    		case T_BooleanTest:
    			result = transformBooleanTest(pstate, (BooleanTest *) expr);
    			break;
    
    			/*********************************************
    			 * Quietly accept node types that may be presented when we are
    			 * called on an already-transformed tree.
    			 *
    			 * Do any other node types need to be accepted?  For now we are
    			 * taking a conservative approach, and only accepting node
    			 * types that are demonstrably necessary to accept.
    			 *********************************************/
    		case T_Var:
    		case T_Const:
    		case T_Param:
    		case T_Aggref:
    		case T_ArrayRef:
    		case T_FuncExpr:
    		case T_OpExpr:
    		case T_DistinctExpr:
    		case T_ScalarArrayOpExpr:
    		case T_NullIfExpr:
    		case T_BoolExpr:
    		case T_FieldSelect:
    		case T_FieldStore:
    		case T_RelabelType:
    		case T_ConvertRowtypeExpr:
    		case T_CaseTestExpr:
    		case T_CoerceToDomain:
    		case T_CoerceToDomainValue:
    		case T_SetToDefault:
    			{
    				result = (Node *) expr;
    				break;
    			}
    
    		default:
    			/* should not reach here */
    			elog(ERROR, "unrecognized node type: %d", (int) nodeTag(expr));
    			break;
    	}
    
    	return result;
    }
    
    static Node *
    transformIndirection(ParseState *pstate, Node *basenode, List *indirection)
    {
    	Node	   *result = basenode;
    	List	   *subscripts = NIL;
    	ListCell   *i;
    
    	/*
    	 * We have to split any field-selection operations apart from
    	 * subscripting.  Adjacent A_Indices nodes have to be treated as a single
    	 * multidimensional subscript operation.
    	 */
    	foreach(i, indirection)
    	{
    		Node	   *n = lfirst(i);
    
    		if (IsA(n, A_Indices))
    			subscripts = lappend(subscripts, n);
    		else
    		{
    			Assert(IsA(n, String));
    
    			/* process subscripts before this field selection */
    			if (subscripts)
    				result = (Node *) transformArraySubscripts(pstate,
    														   result,
    														   exprType(result),
    														   InvalidOid,
    														   -1,
    														   subscripts,
    														   NULL);
    			subscripts = NIL;
    
    			result = ParseFuncOrColumn(pstate,
    									   list_make1(n),
    									   list_make1(result),
    									   false, false, true);
    		}
    	}
    	/* process trailing subscripts, if any */
    	if (subscripts)
    		result = (Node *) transformArraySubscripts(pstate,
    												   result,
    												   exprType(result),
    												   InvalidOid,
    												   -1,
    												   subscripts,
    												   NULL);
    
    	return result;
    }
    
    static Node *
    transformColumnRef(ParseState *pstate, ColumnRef *cref)
    {
    	int			numnames = list_length(cref->fields);
    	Node	   *node;
    	int			levels_up;
    
    	/*----------
    	 * The allowed syntaxes are:
    	 *
    	 * A		First try to resolve as unqualified column name;
    	 *			if no luck, try to resolve as unqualified table name (A.*).
    	 * A.B		A is an unqualified table name; B is either a
    	 *			column or function name (trying column name first).
    	 * A.B.C	schema A, table B, col or func name C.
    	 * A.B.C.D	catalog A, schema B, table C, col or func D.
    	 * A.*		A is an unqualified table name; means whole-row value.
    	 * A.B.*	whole-row value of table B in schema A.
    	 * A.B.C.*	whole-row value of table C in schema B in catalog A.
    	 *
    	 * We do not need to cope with bare "*"; that will only be accepted by
    	 * the grammar at the top level of a SELECT list, and transformTargetList
    	 * will take care of it before it ever gets here.  Also, "A.*" etc will
    	 * be expanded by transformTargetList if they appear at SELECT top level,
    	 * so here we are only going to see them as function or operator inputs.
    	 *
    	 * Currently, if a catalog name is given then it must equal the current
    	 * database name; we check it here and then discard it.
    	 *----------
    	 */
    	switch (numnames)
    	{
    		case 1:
    			{
    				char	   *name = strVal(linitial(cref->fields));
    
    				/* Try to identify as an unqualified column */
    				node = colNameToVar(pstate, name, false);
    
    				if (node == NULL)
    				{
    					/*
    					 * Not known as a column of any range-table entry.
    					 *
    					 * Consider the possibility that it's VALUE in a domain check
    					 * expression.	(We handle VALUE as a name, not a keyword,
    					 * to avoid breaking a lot of applications that have used
    					 * VALUE as a column name in the past.)
    					 */
    					if (pstate->p_value_substitute != NULL &&
    						strcmp(name, "value") == 0)
    					{
    						node = (Node *) copyObject(pstate->p_value_substitute);
    						break;
    					}
    
    					/*
    					 * Try to find the name as a relation.	Note that only
    					 * relations already entered into the rangetable will be
    					 * recognized.
    					 *
    					 * This is a hack for backwards compatibility with
    					 * PostQUEL-inspired syntax.  The preferred form now is
    					 * "rel.*".
    					 */
    					if (refnameRangeTblEntry(pstate, NULL, name,
    											 &levels_up) != NULL)
    						node = transformWholeRowRef(pstate, NULL, name);
    					else
    						ereport(ERROR,
    								(errcode(ERRCODE_UNDEFINED_COLUMN),
    								 errmsg("column \"%s\" does not exist",
    										name)));
    				}
    				break;
    			}
    		case 2:
    			{
    				char	   *name1 = strVal(linitial(cref->fields));
    				char	   *name2 = strVal(lsecond(cref->fields));
    
    				/* Whole-row reference? */
    				if (strcmp(name2, "*") == 0)
    				{
    					node = transformWholeRowRef(pstate, NULL, name1);
    					break;
    				}
    
    				/* Try to identify as a once-qualified column */
    				node = qualifiedNameToVar(pstate, NULL, name1, name2, true);
    				if (node == NULL)
    				{
    					/*
    					 * Not known as a column of any range-table entry, so try
    					 * it as a function call.  Here, we will create an
    					 * implicit RTE for tables not already entered.
    					 */
    					node = transformWholeRowRef(pstate, NULL, name1);
    					node = ParseFuncOrColumn(pstate,
    											 list_make1(makeString(name2)),
    											 list_make1(node),
    											 false, false, true);
    				}
    				break;
    			}
    		case 3:
    			{
    				char	   *name1 = strVal(linitial(cref->fields));
    				char	   *name2 = strVal(lsecond(cref->fields));
    				char	   *name3 = strVal(lthird(cref->fields));
    
    				/* Whole-row reference? */
    				if (strcmp(name3, "*") == 0)
    				{
    					node = transformWholeRowRef(pstate, name1, name2);
    					break;
    				}
    
    				/* Try to identify as a twice-qualified column */
    				node = qualifiedNameToVar(pstate, name1, name2, name3, true);
    				if (node == NULL)
    				{
    					/* Try it as a function call */
    					node = transformWholeRowRef(pstate, name1, name2);
    					node = ParseFuncOrColumn(pstate,
    											 list_make1(makeString(name3)),
    											 list_make1(node),
    											 false, false, true);
    				}
    				break;
    			}
    		case 4:
    			{
    				char	   *name1 = strVal(linitial(cref->fields));
    				char	   *name2 = strVal(lsecond(cref->fields));
    				char	   *name3 = strVal(lthird(cref->fields));
    				char	   *name4 = strVal(lfourth(cref->fields));
    
    				/*
    				 * We check the catalog name and then ignore it.
    				 */
    				if (strcmp(name1, get_database_name(MyDatabaseId)) != 0)
    					ereport(ERROR,
    							(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    							 errmsg("cross-database references are not implemented: %s",
    									NameListToString(cref->fields))));
    
    				/* Whole-row reference? */
    				if (strcmp(name4, "*") == 0)
    				{
    					node = transformWholeRowRef(pstate, name2, name3);
    					break;
    				}
    
    				/* Try to identify as a twice-qualified column */
    				node = qualifiedNameToVar(pstate, name2, name3, name4, true);
    				if (node == NULL)
    				{
    					/* Try it as a function call */
    					node = transformWholeRowRef(pstate, name2, name3);
    					node = ParseFuncOrColumn(pstate,
    											 list_make1(makeString(name4)),
    											 list_make1(node),
    											 false, false, true);
    				}
    				break;
    			}
    		default:
    			ereport(ERROR,
    					(errcode(ERRCODE_SYNTAX_ERROR),
    				errmsg("improper qualified name (too many dotted names): %s",
    					   NameListToString(cref->fields))));
    			node = NULL;		/* keep compiler quiet */
    			break;
    	}
    
    	return node;
    }
    
    static Node *
    transformParamRef(ParseState *pstate, ParamRef *pref)
    {
    	int			paramno = pref->number;
    	ParseState *toppstate;
    	Param	   *param;
    
    	/*
    	 * Find topmost ParseState, which is where paramtype info lives.
    	 */
    	toppstate = pstate;
    	while (toppstate->parentParseState != NULL)
    		toppstate = toppstate->parentParseState;
    
    	/* Check parameter number is in range */
    	if (paramno <= 0)			/* probably can't happen? */
    		ereport(ERROR,
    				(errcode(ERRCODE_UNDEFINED_PARAMETER),
    				 errmsg("there is no parameter $%d", paramno)));
    	if (paramno > toppstate->p_numparams)
    	{
    		if (!toppstate->p_variableparams)
    			ereport(ERROR,
    					(errcode(ERRCODE_UNDEFINED_PARAMETER),
    					 errmsg("there is no parameter $%d",
    							paramno)));
    		/* Okay to enlarge param array */
    		if (toppstate->p_paramtypes)
    			toppstate->p_paramtypes =
    				(Oid *) repalloc(toppstate->p_paramtypes,
    								 paramno * sizeof(Oid));
    		else
    			toppstate->p_paramtypes =
    				(Oid *) palloc(paramno * sizeof(Oid));
    		/* Zero out the previously-unreferenced slots */
    		MemSet(toppstate->p_paramtypes + toppstate->p_numparams,
    			   0,
    			   (paramno - toppstate->p_numparams) * sizeof(Oid));
    		toppstate->p_numparams = paramno;
    	}
    	if (toppstate->p_variableparams)
    	{
    		/* If not seen before, initialize to UNKNOWN type */
    		if (toppstate->p_paramtypes[paramno - 1] == InvalidOid)
    			toppstate->p_paramtypes[paramno - 1] = UNKNOWNOID;
    	}
    
    	param = makeNode(Param);
    	param->paramkind = PARAM_NUM;
    	param->paramid = (AttrNumber) paramno;
    	param->paramtype = toppstate->p_paramtypes[paramno - 1];
    
    	return (Node *) param;
    }
    
    static Node *
    transformAExprOp(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = a->lexpr;
    	Node	   *rexpr = a->rexpr;
    	Node	   *result;
    
    	/*
    	 * Special-case "foo = NULL" and "NULL = foo" for compatibility with
    	 * standards-broken products (like Microsoft's).  Turn these into IS NULL
    	 * exprs.
    	 */
    	if (Transform_null_equals &&
    		list_length(a->name) == 1 &&
    		strcmp(strVal(linitial(a->name)), "=") == 0 &&
    		(exprIsNullConstant(lexpr) || exprIsNullConstant(rexpr)))
    	{
    		NullTest   *n = makeNode(NullTest);
    
    		n->nulltesttype = IS_NULL;
    
    		if (exprIsNullConstant(lexpr))
    			n->arg = (Expr *) rexpr;
    		else
    			n->arg = (Expr *) lexpr;
    
    		result = transformExpr(pstate, (Node *) n);
    	}
    	else if (lexpr && IsA(lexpr, RowExpr) &&
    			 rexpr && IsA(rexpr, SubLink) &&
    			 ((SubLink *) rexpr)->subLinkType == EXPR_SUBLINK)
    	{
    		/*
    		 * Convert "row op subselect" into a MULTIEXPR sublink. Formerly the
    		 * grammar did this, but now that a row construct is allowed anywhere
    		 * in expressions, it's easier to do it here.
    		 */
    		SubLink    *s = (SubLink *) rexpr;
    
    		s->subLinkType = MULTIEXPR_SUBLINK;
    		s->lefthand = ((RowExpr *) lexpr)->args;
    		s->operName = a->name;
    		result = transformExpr(pstate, (Node *) s);
    	}
    	else if (lexpr && IsA(lexpr, RowExpr) &&
    			 rexpr && IsA(rexpr, RowExpr))
    	{
    		/* "row op row" */
    		result = make_row_op(pstate, a->name, lexpr, rexpr);
    	}
    	else
    	{
    		/* Ordinary scalar operator */
    		lexpr = transformExpr(pstate, lexpr);
    		rexpr = transformExpr(pstate, rexpr);
    
    		result = (Node *) make_op(pstate,
    								  a->name,
    								  lexpr,
    								  rexpr);
    	}
    
    	return result;
    }
    
    static Node *
    transformAExprAnd(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	lexpr = coerce_to_boolean(pstate, lexpr, "AND");
    	rexpr = coerce_to_boolean(pstate, rexpr, "AND");
    
    	return (Node *) makeBoolExpr(AND_EXPR,
    								 list_make2(lexpr, rexpr));
    }
    
    static Node *
    transformAExprOr(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	lexpr = coerce_to_boolean(pstate, lexpr, "OR");
    	rexpr = coerce_to_boolean(pstate, rexpr, "OR");
    
    	return (Node *) makeBoolExpr(OR_EXPR,
    								 list_make2(lexpr, rexpr));
    }
    
    static Node *
    transformAExprNot(ParseState *pstate, A_Expr *a)
    {
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	rexpr = coerce_to_boolean(pstate, rexpr, "NOT");
    
    	return (Node *) makeBoolExpr(NOT_EXPR,
    								 list_make1(rexpr));
    }
    
    static Node *
    transformAExprOpAny(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	return (Node *) make_scalar_array_op(pstate,
    										 a->name,
    										 true,
    										 lexpr,
    										 rexpr);
    }
    
    static Node *
    transformAExprOpAll(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    
    	return (Node *) make_scalar_array_op(pstate,
    										 a->name,
    										 false,
    										 lexpr,
    										 rexpr);
    }
    
    static Node *
    transformAExprDistinct(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = a->lexpr;
    	Node	   *rexpr = a->rexpr;
    
    	if (lexpr && IsA(lexpr, RowExpr) &&
    		rexpr && IsA(rexpr, RowExpr))
    	{
    		/* "row op row" */
    		return make_row_distinct_op(pstate, a->name,
    									lexpr, rexpr);
    	}
    	else
    	{
    		/* Ordinary scalar operator */
    		lexpr = transformExpr(pstate, lexpr);
    		rexpr = transformExpr(pstate, rexpr);
    
    		return (Node *) make_distinct_op(pstate,
    										 a->name,
    										 lexpr,
    										 rexpr);
    	}
    }
    
    static Node *
    transformAExprNullIf(ParseState *pstate, A_Expr *a)
    {
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    	Node	   *rexpr = transformExpr(pstate, a->rexpr);
    	Node	   *result;
    
    	result = (Node *) make_op(pstate,
    							  a->name,
    							  lexpr,
    							  rexpr);
    	if (((OpExpr *) result)->opresulttype != BOOLOID)
    		ereport(ERROR,
    				(errcode(ERRCODE_DATATYPE_MISMATCH),
    				 errmsg("NULLIF requires = operator to yield boolean")));
    
    	/*
    	 * We rely on NullIfExpr and OpExpr being the same struct
    	 */
    	NodeSetTag(result, T_NullIfExpr);
    
    	return result;
    }
    
    static Node *
    transformAExprOf(ParseState *pstate, A_Expr *a)
    {
    	/*
    	 * Checking an expression for match to type.  Will result in a boolean
    	 * constant node.
    	 */
    	ListCell   *telem;
    	A_Const    *n;
    	Oid			ltype,
    				rtype;
    	bool		matched = false;
    	Node	   *lexpr = transformExpr(pstate, a->lexpr);
    
    	ltype = exprType(lexpr);
    	foreach(telem, (List *) a->rexpr)
    	{
    		rtype = LookupTypeName(lfirst(telem));
    		matched = (rtype == ltype);
    		if (matched)
    			break;
    	}
    
    	/*
    	 * Expect two forms: equals or not equals.	Flip the sense of the result
    	 * for not equals.
    	 */
    	if (strcmp(strVal(linitial(a->name)), "!=") == 0)
    		matched = (!matched);
    
    	n = makeNode(A_Const);
    	n->val.type = T_String;
    	n->val.val.str = (matched ? "t" : "f");
    	n->typename = SystemTypeName("bool");
    
    	return transformExpr(pstate, (Node *) n);
    }
    
    static Node *
    transformFuncCall(ParseState *pstate, FuncCall *fn)
    {
    	List	   *targs;
    	ListCell   *args;
    
    	/*
    	 * Transform the list of arguments.  We use a shallow list copy and then
    	 * transform-in-place to avoid O(N^2) behavior from repeated lappend's.
    	 *
    	 * XXX: repeated lappend() would no longer result in O(n^2) behavior; worth
    	 * reconsidering this design?
    	 */
    	targs = list_copy(fn->args);
    	foreach(args, targs)
    	{
    		lfirst(args) = transformExpr(pstate,
    									 (Node *) lfirst(args));
    	}
    
    	return ParseFuncOrColumn(pstate,
    							 fn->funcname,
    							 targs,
    							 fn->agg_star,
    							 fn->agg_distinct,
    							 false);
    }
    
    static Node *
    transformCaseExpr(ParseState *pstate, CaseExpr *c)
    {
    	CaseExpr   *newc;
    	Node	   *arg;
    	CaseTestExpr *placeholder;
    	List	   *newargs;
    	List	   *typeids;
    	ListCell   *l;
    	Node	   *defresult;
    	Oid			ptype;
    
    	/* If we already transformed this node, do nothing */
    	if (OidIsValid(c->casetype))
    		return (Node *) c;
    
    	newc = makeNode(CaseExpr);
    
    	/* transform the test expression, if any */
    	arg = transformExpr(pstate, (Node *) c->arg);
    
    	/* generate placeholder for test expression */
    	if (arg)
    	{
    		/*
    		 * If test expression is an untyped literal, force it to text. We have
    		 * to do something now because we won't be able to do this coercion on
    		 * the placeholder.  This is not as flexible as what was done in 7.4
    		 * and before, but it's good enough to handle the sort of silly coding
    		 * commonly seen.
    		 */
    		if (exprType(arg) == UNKNOWNOID)
    			arg = coerce_to_common_type(pstate, arg, TEXTOID, "CASE");
    
    		placeholder = makeNode(CaseTestExpr);
    		placeholder->typeId = exprType(arg);
    		placeholder->typeMod = exprTypmod(arg);
    	}
    	else
    		placeholder = NULL;
    
    	newc->arg = (Expr *) arg;
    
    	/* transform the list of arguments */
    	newargs = NIL;
    	typeids = NIL;
    	foreach(l, c->args)
    	{
    		CaseWhen   *w = (CaseWhen *) lfirst(l);
    		CaseWhen   *neww = makeNode(CaseWhen);
    		Node	   *warg;
    
    		Assert(IsA(w, CaseWhen));
    
    		warg = (Node *) w->expr;
    		if (placeholder)
    		{
    			/* shorthand form was specified, so expand... */
    			warg = (Node *) makeSimpleA_Expr(AEXPR_OP, "=",
    											 (Node *) placeholder,
    											 warg);
    		}
    		neww->expr = (Expr *) transformExpr(pstate, warg);
    
    		neww->expr = (Expr *) coerce_to_boolean(pstate,
    												(Node *) neww->expr,
    												"CASE/WHEN");
    
    		warg = (Node *) w->result;
    		neww->result = (Expr *) transformExpr(pstate, warg);
    
    		newargs = lappend(newargs, neww);
    		typeids = lappend_oid(typeids, exprType((Node *) neww->result));
    	}
    
    	newc->args = newargs;
    
    	/* transform the default clause */
    	defresult = (Node *) c->defresult;
    	if (defresult == NULL)
    	{
    		A_Const    *n = makeNode(A_Const);
    
    		n->val.type = T_Null;
    		defresult = (Node *) n;
    	}
    	newc->defresult = (Expr *) transformExpr(pstate, defresult);
    
    	/*
    	 * Note: default result is considered the most significant type in
    	 * determining preferred type. This is how the code worked before, but it
    	 * seems a little bogus to me --- tgl
    	 */
    	typeids = lcons_oid(exprType((Node *) newc->defresult), typeids);
    
    	ptype = select_common_type(typeids, "CASE");
    	Assert(OidIsValid(ptype));
    	newc->casetype = ptype;
    
    	/* Convert default result clause, if necessary */
    	newc->defresult = (Expr *)
    		coerce_to_common_type(pstate,
    							  (Node *) newc->defresult,
    							  ptype,
    							  "CASE/ELSE");
    
    	/* Convert when-clause results, if necessary */
    	foreach(l, newc->args)
    	{
    		CaseWhen   *w = (CaseWhen *) lfirst(l);
    
    		w->result = (Expr *)
    			coerce_to_common_type(pstate,
    								  (Node *) w->result,
    								  ptype,
    								  "CASE/WHEN");
    	}
    
    	return (Node *) newc;
    }
    
    static Node *
    transformSubLink(ParseState *pstate, SubLink *sublink)
    {
    	List	   *qtrees;
    	Query	   *qtree;
    	Node	   *result = (Node *) sublink;
    
    	/* If we already transformed this node, do nothing */
    	if (IsA(sublink->subselect, Query))
    		return result;
    
    	pstate->p_hasSubLinks = true;
    	qtrees = parse_sub_analyze(sublink->subselect, pstate);
    	if (list_length(qtrees) != 1)
    		elog(ERROR, "bad query in sub-select");
    	qtree = (Query *) linitial(qtrees);
    	if (qtree->commandType != CMD_SELECT ||
    		qtree->resultRelation != 0)
    		elog(ERROR, "bad query in sub-select");
    	sublink->subselect = (Node *) qtree;
    
    	if (sublink->subLinkType == EXISTS_SUBLINK)
    	{
    		/*
    		 * EXISTS needs no lefthand or combining operator.	These fields
    		 * should be NIL already, but make sure.
    		 */
    		sublink->lefthand = NIL;
    		sublink->operName = NIL;
    		sublink->operOids = NIL;
    		sublink->useOr = FALSE;
    	}
    	else if (sublink->subLinkType == EXPR_SUBLINK ||
    			 sublink->subLinkType == ARRAY_SUBLINK)
    	{
    		ListCell   *tlist_item = list_head(qtree->targetList);
    
    		/*
    		 * Make sure the subselect delivers a single column (ignoring resjunk
    		 * targets).
    		 */
    		if (tlist_item == NULL ||
    			((TargetEntry *) lfirst(tlist_item))->resjunk)
    			ereport(ERROR,
    					(errcode(ERRCODE_SYNTAX_ERROR),
    					 errmsg("subquery must return a column")));
    		while ((tlist_item = lnext(tlist_item)) != NULL)
    		{
    			if (!((TargetEntry *) lfirst(tlist_item))->resjunk)
    				ereport(ERROR,
    						(errcode(ERRCODE_SYNTAX_ERROR),
    						 errmsg("subquery must return only one column")));
    		}
    
    		/*
    		 * EXPR and ARRAY need no lefthand or combining operator. These fields
    		 * should be NIL already, but make sure.
    		 */
    		sublink->lefthand = NIL;
    		sublink->operName = NIL;
    		sublink->operOids = NIL;
    		sublink->useOr = FALSE;
    	}
    	else
    	{
    		/* ALL, ANY, or MULTIEXPR: generate operator list */
    		List	   *left_list = sublink->lefthand;
    		List	   *right_list = qtree->targetList;
    		int			row_length = list_length(left_list);
    		bool		needNot = false;
    		List	   *op = sublink->operName;
    		char	   *opname = strVal(llast(op));
    		ListCell   *l;
    		ListCell   *ll_item;
    
    		/* transform lefthand expressions */
    		foreach(l, left_list)
    			lfirst(l) = transformExpr(pstate, lfirst(l));
    
    		/*
    		 * If the expression is "<> ALL" (with unqualified opname) then
    		 * convert it to "NOT IN".	This is a hack to improve efficiency of
    		 * expressions output by pre-7.4 Postgres.
    		 */
    		if (sublink->subLinkType == ALL_SUBLINK &&
    			list_length(op) == 1 && strcmp(opname, "<>") == 0)
    		{
    			sublink->subLinkType = ANY_SUBLINK;
    			opname = pstrdup("=");
    			op = list_make1(makeString(opname));
    			sublink->operName = op;
    			needNot = true;
    		}
    
    		/* Set useOr if op is "<>" (possibly qualified) */
    		if (strcmp(opname, "<>") == 0)
    			sublink->useOr = TRUE;
    		else
    			sublink->useOr = FALSE;
    
    		/* Combining operators other than =/<> is dubious... */
    		if (row_length != 1 &&
    			strcmp(opname, "=") != 0 &&
    			strcmp(opname, "<>") != 0)
    			ereport(ERROR,
    					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    					 errmsg("row comparison cannot use operator %s",
    							opname)));
    
    		/*
    		 * To build the list of combining operator OIDs, we must scan
    		 * subquery's targetlist to find values that will be matched against
    		 * lefthand values.  We need to ignore resjunk targets, so doing the
    		 * outer iteration over right_list is easier than doing it over
    		 * left_list.
    		 */
    		sublink->operOids = NIL;
    
    		ll_item = list_head(left_list);
    		foreach(l, right_list)
    		{
    			TargetEntry *tent = (TargetEntry *) lfirst(l);
    			Node	   *lexpr;
    			Operator	optup;
    			Form_pg_operator opform;
    
    			if (tent->resjunk)
    				continue;
    
    			if (ll_item == NULL)
    				ereport(ERROR,
    						(errcode(ERRCODE_SYNTAX_ERROR),
    						 errmsg("subquery has too many columns")));
    			lexpr = lfirst(ll_item);
    			ll_item = lnext(ll_item);
    
    			/*
    			 * It's OK to use oper() not compatible_oper() here, because
    			 * make_subplan() will insert type coercion calls if needed.
    			 */
    			optup = oper(op,
    						 exprType(lexpr),
    						 exprType((Node *) tent->expr),
    						 false);
    			opform = (Form_pg_operator) GETSTRUCT(optup);
    
    			if (opform->oprresult != BOOLOID)
    				ereport(ERROR,
    						(errcode(ERRCODE_DATATYPE_MISMATCH),
    				  errmsg("operator %s must return type boolean, not type %s",
    						 opname,
    						 format_type_be(opform->oprresult)),
    						 errhint("The operator of a quantified predicate subquery must return type boolean.")));
    
    			if (get_func_retset(opform->oprcode))
    				ereport(ERROR,
    						(errcode(ERRCODE_DATATYPE_MISMATCH),
    						 errmsg("operator %s must not return a set",
    								opname),
    						 errhint("The operator of a quantified predicate subquery must return type boolean.")));
    
    			sublink->operOids = lappend_oid(sublink->operOids,
    											oprid(optup));
    
    			ReleaseSysCache(optup);
    		}
    		if (ll_item != NULL)
    			ereport(ERROR,
    					(errcode(ERRCODE_SYNTAX_ERROR),
    					 errmsg("subquery has too few columns")));
    
    		if (needNot)
    		{
    			result = coerce_to_boolean(pstate, result, "NOT");
    			result = (Node *) makeBoolExpr(NOT_EXPR,
    										   list_make1(result));
    		}
    	}
    
    	return result;
    }
    
    static Node *
    transformArrayExpr(ParseState *pstate, ArrayExpr *a)
    {
    	ArrayExpr  *newa = makeNode(ArrayExpr);
    	List	   *newelems = NIL;
    	List	   *newcoercedelems = NIL;
    	List	   *typeids = NIL;
    	ListCell   *element;
    	Oid			array_type;
    	Oid			element_type;
    
    	/* Transform the element expressions */
    	foreach(element, a->elements)
    	{
    		Node	   *e = (Node *) lfirst(element);
    		Node	   *newe;
    
    		newe = transformExpr(pstate, e);
    		newelems = lappend(newelems, newe);
    		typeids = lappend_oid(typeids, exprType(newe));
    	}
    
    	/* Select a common type for the elements */
    	element_type = select_common_type(typeids, "ARRAY");
    
    	/* Coerce arguments to common type if necessary */
    	foreach(element, newelems)
    	{
    		Node	   *e = (Node *) lfirst(element);
    		Node	   *newe;
    
    		newe = coerce_to_common_type(pstate, e,
    									 element_type,
    									 "ARRAY");
    		newcoercedelems = lappend(newcoercedelems, newe);
    	}
    
    	/* Do we have an array type to use? */
    	array_type = get_array_type(element_type);
    	if (array_type != InvalidOid)
    	{
    		/* Elements are presumably of scalar type */
    		newa->multidims = false;
    	}
    	else
    	{
    		/* Must be nested array expressions */
    		newa->multidims = true;
    
    		array_type = element_type;
    		element_type = get_element_type(array_type);
    		if (!OidIsValid(element_type))
    			ereport(ERROR,
    					(errcode(ERRCODE_UNDEFINED_OBJECT),
    					 errmsg("could not find array type for data type %s",
    							format_type_be(array_type))));
    	}
    
    	newa->array_typeid = array_type;
    	newa->element_typeid = element_type;
    	newa->elements = newcoercedelems;
    
    	return (Node *) newa;
    }
    
    static Node *
    transformRowExpr(ParseState *pstate, RowExpr *r)
    {
    	RowExpr    *newr = makeNode(RowExpr);
    	List	   *newargs = NIL;
    	ListCell   *arg;
    
    	/* Transform the field expressions */
    	foreach(arg, r->args)
    	{
    		Node	   *e = (Node *) lfirst(arg);
    		Node	   *newe;
    
    		newe = transformExpr(pstate, e);
    		newargs = lappend(newargs, newe);
    	}
    	newr->args = newargs;
    
    	/* Barring later casting, we consider the type RECORD */
    	newr->row_typeid = RECORDOID;
    	newr->row_format = COERCE_IMPLICIT_CAST;
    
    	return (Node *) newr;
    }
    
    static Node *
    transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c)
    {
    	CoalesceExpr *newc = makeNode(CoalesceExpr);
    	List	   *newargs = NIL;
    	List	   *newcoercedargs = NIL;
    	List	   *typeids = NIL;
    	ListCell   *args;
    
    	foreach(args, c->args)
    	{
    		Node	   *e = (Node *) lfirst(args);
    		Node	   *newe;
    
    		newe = transformExpr(pstate, e);
    		newargs = lappend(newargs, newe);
    		typeids = lappend_oid(typeids, exprType(newe));
    	}
    
    	newc->coalescetype = select_common_type(typeids, "COALESCE");
    
    	/* Convert arguments if necessary */
    	foreach(args, newargs)
    	{
    		Node	   *e = (Node *) lfirst(args);
    		Node	   *newe;
    
    		newe = coerce_to_common_type(pstate, e,
    									 newc->coalescetype,
    									 "COALESCE");
    		newcoercedargs = lappend(newcoercedargs, newe);
    	}
    
    	newc->args = newcoercedargs;
    	return (Node *) newc;
    }
    
    static Node *
    transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m)
    {
    	MinMaxExpr *newm = makeNode(MinMaxExpr);
    	List	   *newargs = NIL;
    	List	   *newcoercedargs = NIL;
    	List	   *typeids = NIL;
    	ListCell   *args;
    
    	newm->op = m->op;
    	foreach(args, m->args)
    	{
    		Node	   *e = (Node *) lfirst(args);
    		Node	   *newe;
    
    		newe = transformExpr(pstate, e);
    		newargs = lappend(newargs, newe);
    		typeids = lappend_oid(typeids, exprType(newe));
    	}
    
    	newm->minmaxtype = select_common_type(typeids, "GREATEST/LEAST");
    
    	/* Convert arguments if necessary */
    	foreach(args, newargs)
    	{
    		Node	   *e = (Node *) lfirst(args);
    		Node	   *newe;
    
    		newe = coerce_to_common_type(pstate, e,
    									 newm->minmaxtype,
    									 "GREATEST/LEAST");
    		newcoercedargs = lappend(newcoercedargs, newe);
    	}
    
    	newm->args = newcoercedargs;
    	return (Node *) newm;
    }
    
    static Node *
    transformBooleanTest(ParseState *pstate, BooleanTest *b)
    {
    	const char *clausename;
    
    	switch (b->booltesttype)
    	{
    		case IS_TRUE:
    			clausename = "IS TRUE";
    			break;
    		case IS_NOT_TRUE:
    			clausename = "IS NOT TRUE";
    			break;
    		case IS_FALSE:
    			clausename = "IS FALSE";
    			break;
    		case IS_NOT_FALSE:
    			clausename = "IS NOT FALSE";
    			break;
    		case IS_UNKNOWN:
    			clausename = "IS UNKNOWN";
    			break;
    		case IS_NOT_UNKNOWN:
    			clausename = "IS NOT UNKNOWN";
    			break;
    		default:
    			elog(ERROR, "unrecognized booltesttype: %d",
    				 (int) b->booltesttype);
    			clausename = NULL;	/* keep compiler quiet */
    	}
    
    	b->arg = (Expr *) transformExpr(pstate, (Node *) b->arg);
    
    	b->arg = (Expr *) coerce_to_boolean(pstate,
    										(Node *) b->arg,
    										clausename);
    
    	return (Node *) b;
    }
    
    /*
     * Construct a whole-row reference to represent the notation "relation.*".
     *
     * A whole-row reference is a Var with varno set to the correct range
     * table entry, and varattno == 0 to signal that it references the whole
     * tuple.  (Use of zero here is unclean, since it could easily be confused
     * with error cases, but it's not worth changing now.)  The vartype indicates
     * a rowtype; either a named composite type, or RECORD.
     */
    static Node *
    transformWholeRowRef(ParseState *pstate, char *schemaname, char *relname)
    {
    	Node	   *result;
    	RangeTblEntry *rte;
    	int			vnum;
    	int			sublevels_up;
    	Oid			toid;
    
    	/* Look up the referenced RTE, creating it if needed */
    
    	rte = refnameRangeTblEntry(pstate, schemaname, relname,
    							   &sublevels_up);
    
    	if (rte == NULL)
    		rte = addImplicitRTE(pstate, makeRangeVar(schemaname, relname));
    
    	vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
    
    	/* Build the appropriate referencing node */
    
    	switch (rte->rtekind)
    	{
    		case RTE_RELATION:
    			/* relation: the rowtype is a named composite type */
    			toid = get_rel_type_id(rte->relid);
    			if (!OidIsValid(toid))
    				elog(ERROR, "could not find type OID for relation %u",
    					 rte->relid);
    			result = (Node *) makeVar(vnum,
    									  InvalidAttrNumber,
    									  toid,
    									  -1,
    									  sublevels_up);
    			break;
    		case RTE_FUNCTION:
    			toid = exprType(rte->funcexpr);
    			if (toid == RECORDOID || get_typtype(toid) == 'c')
    			{
    				/* func returns composite; same as relation case */
    				result = (Node *) makeVar(vnum,
    										  InvalidAttrNumber,
    										  toid,
    										  -1,
    										  sublevels_up);
    			}
    			else
    			{
    				/*
    				 * func returns scalar; instead of making a whole-row Var,
    				 * just reference the function's scalar output.  (XXX this
    				 * seems a tad inconsistent, especially if "f.*" was
    				 * explicitly written ...)
    				 */
    				result = (Node *) makeVar(vnum,
    										  1,
    										  toid,
    										  -1,
    										  sublevels_up);
    			}
    			break;
    		default:
    
    			/*
    			 * RTE is a join or subselect.	We represent this as a whole-row
    			 * Var of RECORD type.	(Note that in most cases the Var will be
    			 * expanded to a RowExpr during planning, but that is not our
    			 * concern here.)
    			 */
    			result = (Node *) makeVar(vnum,
    									  InvalidAttrNumber,
    									  RECORDOID,
    									  -1,
    									  sublevels_up);
    			break;
    	}
    
    	return result;
    }
    
    /*
     *	exprType -
     *	  returns the Oid of the type of the expression. (Used for typechecking.)
     */
    Oid
    exprType(Node *expr)
    {
    	Oid			type;
    
    	if (!expr)
    		return InvalidOid;
    
    	switch (nodeTag(expr))
    	{
    		case T_Var:
    			type = ((Var *) expr)->vartype;
    			break;
    		case T_Const:
    			type = ((Const *) expr)->consttype;
    			break;
    		case T_Param:
    			type = ((Param *) expr)->paramtype;
    			break;
    		case T_Aggref:
    			type = ((Aggref *) expr)->aggtype;
    			break;
    		case T_ArrayRef:
    			type = ((ArrayRef *) expr)->refrestype;
    			break;
    		case T_FuncExpr:
    			type = ((FuncExpr *) expr)->funcresulttype;
    			break;
    		case T_OpExpr:
    			type = ((OpExpr *) expr)->opresulttype;
    			break;
    		case T_DistinctExpr:
    			type = ((DistinctExpr *) expr)->opresulttype;
    			break;
    		case T_ScalarArrayOpExpr:
    			type = BOOLOID;
    			break;
    		case T_BoolExpr:
    			type = BOOLOID;
    			break;
    		case T_SubLink:
    			{
    				SubLink    *sublink = (SubLink *) expr;
    
    				if (sublink->subLinkType == EXPR_SUBLINK ||
    					sublink->subLinkType == ARRAY_SUBLINK)
    				{
    					/* get the type of the subselect's first target column */
    					Query	   *qtree = (Query *) sublink->subselect;
    					TargetEntry *tent;
    
    					if (!qtree || !IsA(qtree, Query))
    						elog(ERROR, "cannot get type for untransformed sublink");
    					tent = (TargetEntry *) linitial(qtree->targetList);
    					Assert(IsA(tent, TargetEntry));
    					Assert(!tent->resjunk);
    					type = exprType((Node *) tent->expr);
    					if (sublink->subLinkType == ARRAY_SUBLINK)
    					{
    						type = get_array_type(type);
    						if (!OidIsValid(type))
    							ereport(ERROR,
    									(errcode(ERRCODE_UNDEFINED_OBJECT),
    									 errmsg("could not find array type for data type %s",
    							format_type_be(exprType((Node *) tent->expr)))));
    					}
    				}
    				else
    				{
    					/* for all other sublink types, result is boolean */
    					type = BOOLOID;
    				}
    			}
    			break;
    		case T_SubPlan:
    			{
    				/*
    				 * Although the parser does not ever deal with already-planned
    				 * expression trees, we support SubPlan nodes in this routine
    				 * for the convenience of ruleutils.c.
    				 */
    				SubPlan    *subplan = (SubPlan *) expr;
    
    				if (subplan->subLinkType == EXPR_SUBLINK ||
    					subplan->subLinkType == ARRAY_SUBLINK)
    				{
    					/* get the type of the subselect's first target column */
    					TargetEntry *tent;
    
    					tent = (TargetEntry *) linitial(subplan->plan->targetlist);
    					Assert(IsA(tent, TargetEntry));
    					Assert(!tent->resjunk);
    					type = exprType((Node *) tent->expr);
    					if (subplan->subLinkType == ARRAY_SUBLINK)
    					{
    						type = get_array_type(type);
    						if (!OidIsValid(type))
    							ereport(ERROR,
    									(errcode(ERRCODE_UNDEFINED_OBJECT),
    									 errmsg("could not find array type for data type %s",
    							format_type_be(exprType((Node *) tent->expr)))));
    					}
    				}
    				else
    				{
    					/* for all other subplan types, result is boolean */
    					type = BOOLOID;
    				}
    			}
    			break;
    		case T_FieldSelect:
    			type = ((FieldSelect *) expr)->resulttype;
    			break;
    		case T_FieldStore:
    			type = ((FieldStore *) expr)->resulttype;
    			break;
    		case T_RelabelType:
    			type = ((RelabelType *) expr)->resulttype;
    			break;
    		case T_ConvertRowtypeExpr:
    			type = ((ConvertRowtypeExpr *) expr)->resulttype;
    			break;
    		case T_CaseExpr:
    			type = ((CaseExpr *) expr)->casetype;
    			break;
    		case T_CaseWhen:
    			type = exprType((Node *) ((CaseWhen *) expr)->result);
    			break;
    		case T_CaseTestExpr:
    			type = ((CaseTestExpr *) expr)->typeId;
    			break;
    		case T_ArrayExpr:
    			type = ((ArrayExpr *) expr)->array_typeid;
    			break;
    		case T_RowExpr:
    			type = ((RowExpr *) expr)->row_typeid;
    			break;
    		case T_CoalesceExpr:
    			type = ((CoalesceExpr *) expr)->coalescetype;
    			break;
    		case T_MinMaxExpr:
    			type = ((MinMaxExpr *) expr)->minmaxtype;
    			break;
    		case T_NullIfExpr:
    			type = exprType((Node *) linitial(((NullIfExpr *) expr)->args));
    			break;
    		case T_NullTest:
    			type = BOOLOID;
    			break;
    		case T_BooleanTest:
    			type = BOOLOID;
    			break;
    		case T_CoerceToDomain:
    			type = ((CoerceToDomain *) expr)->resulttype;
    			break;
    		case T_CoerceToDomainValue:
    			type = ((CoerceToDomainValue *) expr)->typeId;
    			break;
    		case T_SetToDefault:
    			type = ((SetToDefault *) expr)->typeId;
    			break;
    		default:
    			elog(ERROR, "unrecognized node type: %d", (int) nodeTag(expr));
    			type = InvalidOid;	/* keep compiler quiet */
    			break;
    	}
    	return type;
    }
    
    /*
     *	exprTypmod -
     *	  returns the type-specific attrmod of the expression, if it can be
     *	  determined.  In most cases, it can't and we return -1.
     */
    int32
    exprTypmod(Node *expr)
    {
    	if (!expr)
    		return -1;
    
    	switch (nodeTag(expr))
    	{
    		case T_Var:
    			return ((Var *) expr)->vartypmod;
    		case T_Const:
    			{
    				/* Be smart about string constants... */
    				Const	   *con = (Const *) expr;
    
    				switch (con->consttype)
    				{
    					case BPCHAROID:
    						if (!con->constisnull)
    						{
    							int32		len = VARSIZE(DatumGetPointer(con->constvalue)) - VARHDRSZ;
    
    							/* if multi-byte, take len and find # characters */
    							if (pg_database_encoding_max_length() > 1)
    								len = pg_mbstrlen_with_len(VARDATA(DatumGetPointer(con->constvalue)), len);
    							return len + VARHDRSZ;
    						}
    						break;
    					default:
    						break;
    				}
    			}
    			break;
    		case T_FuncExpr:
    			{
    				int32		coercedTypmod;
    
    				/* Be smart about length-coercion functions... */
    				if (exprIsLengthCoercion(expr, &coercedTypmod))
    					return coercedTypmod;
    			}
    			break;
    		case T_FieldSelect:
    			return ((FieldSelect *) expr)->resulttypmod;
    		case T_RelabelType:
    			return ((RelabelType *) expr)->resulttypmod;
    		case T_CaseExpr:
    			{
    				/*
    				 * If all the alternatives agree on type/typmod, return that
    				 * typmod, else use -1
    				 */
    				CaseExpr   *cexpr = (CaseExpr *) expr;
    				Oid			casetype = cexpr->casetype;
    				int32		typmod;
    				ListCell   *arg;
    
    				if (!cexpr->defresult)
    					return -1;
    				if (exprType((Node *) cexpr->defresult) != casetype)
    					return -1;
    				typmod = exprTypmod((Node *) cexpr->defresult);
    				if (typmod < 0)
    					return -1;	/* no point in trying harder */
    				foreach(arg, cexpr->args)
    				{
    					CaseWhen   *w = (CaseWhen *) lfirst(arg);
    
    					Assert(IsA(w, CaseWhen));
    					if (exprType((Node *) w->result) != casetype)
    						return -1;
    					if (exprTypmod((Node *) w->result) != typmod)
    						return -1;
    				}
    				return typmod;
    			}
    			break;
    		case T_CaseTestExpr:
    			return ((CaseTestExpr *) expr)->typeMod;
    		case T_CoalesceExpr:
    			{
    				/*
    				 * If all the alternatives agree on type/typmod, return that
    				 * typmod, else use -1
    				 */
    				CoalesceExpr *cexpr = (CoalesceExpr *) expr;
    				Oid			coalescetype = cexpr->coalescetype;
    				int32		typmod;
    				ListCell   *arg;
    
    				if (exprType((Node *) linitial(cexpr->args)) != coalescetype)
    					return -1;
    				typmod = exprTypmod((Node *) linitial(cexpr->args));
    				if (typmod < 0)
    					return -1;	/* no point in trying harder */
    				for_each_cell(arg, lnext(list_head(cexpr->args)))
    				{
    					Node	   *e = (Node *) lfirst(arg);
    
    					if (exprType(e) != coalescetype)
    						return -1;
    					if (exprTypmod(e) != typmod)
    						return -1;
    				}
    				return typmod;
    			}
    			break;
    		case T_MinMaxExpr:
    			{
    				/*
    				 * If all the alternatives agree on type/typmod, return that
    				 * typmod, else use -1
    				 */
    				MinMaxExpr *mexpr = (MinMaxExpr *) expr;
    				Oid			minmaxtype = mexpr->minmaxtype;
    				int32		typmod;
    				ListCell   *arg;
    
    				if (exprType((Node *) linitial(mexpr->args)) != minmaxtype)
    					return -1;
    				typmod = exprTypmod((Node *) linitial(mexpr->args));
    				if (typmod < 0)
    					return -1;	/* no point in trying harder */
    				for_each_cell(arg, lnext(list_head(mexpr->args)))
    				{
    					Node	   *e = (Node *) lfirst(arg);
    
    					if (exprType(e) != minmaxtype)
    						return -1;
    					if (exprTypmod(e) != typmod)
    						return -1;
    				}
    				return typmod;
    			}
    			break;
    		case T_NullIfExpr:
    			{
    				NullIfExpr *nexpr = (NullIfExpr *) expr;
    
    				return exprTypmod((Node *) linitial(nexpr->args));
    			}
    			break;
    		case T_CoerceToDomain:
    			return ((CoerceToDomain *) expr)->resulttypmod;
    		case T_CoerceToDomainValue:
    			return ((CoerceToDomainValue *) expr)->typeMod;
    		case T_SetToDefault:
    			return ((SetToDefault *) expr)->typeMod;
    		default:
    			break;
    	}
    	return -1;
    }
    
    /*
     * exprIsLengthCoercion
     *		Detect whether an expression tree is an application of a datatype's
     *		typmod-coercion function.  Optionally extract the result's typmod.
     *
     * If coercedTypmod is not NULL, the typmod is stored there if the expression
     * is a length-coercion function, else -1 is stored there.
     *
     * Note that a combined type-and-length coercion will be treated as a
     * length coercion by this routine.
     */
    bool
    exprIsLengthCoercion(Node *expr, int32 *coercedTypmod)
    {
    	FuncExpr   *func;
    	int			nargs;
    	Const	   *second_arg;
    
    	if (coercedTypmod != NULL)
    		*coercedTypmod = -1;	/* default result on failure */
    
    	/* Is it a function-call at all? */
    	if (expr == NULL || !IsA(expr, FuncExpr))
    		return false;
    	func = (FuncExpr *) expr;
    
    	/*
    	 * If it didn't come from a coercion context, reject.
    	 */
    	if (func->funcformat != COERCE_EXPLICIT_CAST &&
    		func->funcformat != COERCE_IMPLICIT_CAST)
    		return false;
    
    	/*
    	 * If it's not a two-argument or three-argument function with the second
    	 * argument being an int4 constant, it can't have been created from a
    	 * length coercion (it must be a type coercion, instead).
    	 */
    	nargs = list_length(func->args);
    	if (nargs < 2 || nargs > 3)
    		return false;
    
    	second_arg = (Const *) lsecond(func->args);
    	if (!IsA(second_arg, Const) ||
    		second_arg->consttype != INT4OID ||
    		second_arg->constisnull)
    		return false;
    
    	/*
    	 * OK, it is indeed a length-coercion function.
    	 */
    	if (coercedTypmod != NULL)
    		*coercedTypmod = DatumGetInt32(second_arg->constvalue);
    
    	return true;
    }
    
    /*
     * Handle an explicit CAST construct.
     *
     * The given expr has already been transformed, but we need to lookup
     * the type name and then apply any necessary coercion function(s).
     */
    static Node *
    typecast_expression(ParseState *pstate, Node *expr, TypeName *typename)
    {
    	Oid			inputType = exprType(expr);
    	Oid			targetType;
    
    	targetType = typenameTypeId(typename);
    
    	if (inputType == InvalidOid)
    		return expr;			/* do nothing if NULL input */
    
    	expr = coerce_to_target_type(pstate, expr, inputType,
    								 targetType, typename->typmod,
    								 COERCION_EXPLICIT,
    								 COERCE_EXPLICIT_CAST);
    	if (expr == NULL)
    		ereport(ERROR,
    				(errcode(ERRCODE_CANNOT_COERCE),
    				 errmsg("cannot cast type %s to %s",
    						format_type_be(inputType),
    						format_type_be(targetType))));
    
    	return expr;
    }
    
    /*
     * Transform a "row op row" construct
     */
    static Node *
    make_row_op(ParseState *pstate, List *opname, Node *ltree, Node *rtree)
    {
    	Node	   *result = NULL;
    	RowExpr    *lrow,
    			   *rrow;
    	List	   *largs,
    			   *rargs;
    	ListCell   *l,
    			   *r;
    	char	   *oprname;
    	BoolExprType boolop;
    
    	/* Inputs are untransformed RowExprs */
    	lrow = (RowExpr *) transformExpr(pstate, ltree);
    	rrow = (RowExpr *) transformExpr(pstate, rtree);
    	Assert(IsA(lrow, RowExpr));
    	Assert(IsA(rrow, RowExpr));
    	largs = lrow->args;
    	rargs = rrow->args;
    
    	if (list_length(largs) != list_length(rargs))
    		ereport(ERROR,
    				(errcode(ERRCODE_SYNTAX_ERROR),
    				 errmsg("unequal number of entries in row expression")));
    
    	/*
    	 * XXX it's really wrong to generate a simple AND combination for < <= >
    	 * >=.	We probably need to invent a new runtime node type to handle those
    	 * correctly.  For the moment, though, keep on doing this ...
    	 */
    	oprname = strVal(llast(opname));
    
    	if ((strcmp(oprname, "=") == 0) ||
    		(strcmp(oprname, "<") == 0) ||
    		(strcmp(oprname, "<=") == 0) ||
    		(strcmp(oprname, ">") == 0) ||
    		(strcmp(oprname, ">=") == 0))
    		boolop = AND_EXPR;
    	else if (strcmp(oprname, "<>") == 0)
    		boolop = OR_EXPR;
    	else
    	{
    		ereport(ERROR,
    				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    				 errmsg("operator %s is not supported for row expressions",
    						oprname)));
    		boolop = 0;				/* keep compiler quiet */
    	}
    
    	forboth(l, largs, r, rargs)
    	{
    		Node	   *larg = (Node *) lfirst(l);
    		Node	   *rarg = (Node *) lfirst(r);
    		Node	   *cmp;
    
    		cmp = (Node *) make_op(pstate, opname, larg, rarg);
    		cmp = coerce_to_boolean(pstate, cmp, "row comparison");
    		if (result == NULL)
    			result = cmp;
    		else
    			result = (Node *) makeBoolExpr(boolop,
    										   list_make2(result, cmp));
    	}
    
    	if (result == NULL)
    	{
    		/* zero-length rows?  Generate constant TRUE or FALSE */
    		if (boolop == AND_EXPR)
    			result = makeBoolConst(true, false);
    		else
    			result = makeBoolConst(false, false);
    	}
    
    	return result;
    }
    
    /*
     * Transform a "row IS DISTINCT FROM row" construct
     */
    static Node *
    make_row_distinct_op(ParseState *pstate, List *opname,
    					 Node *ltree, Node *rtree)
    {
    	Node	   *result = NULL;
    	RowExpr    *lrow,
    			   *rrow;
    	List	   *largs,
    			   *rargs;
    	ListCell   *l,
    			   *r;
    
    	/* Inputs are untransformed RowExprs */
    	lrow = (RowExpr *) transformExpr(pstate, ltree);
    	rrow = (RowExpr *) transformExpr(pstate, rtree);
    	Assert(IsA(lrow, RowExpr));
    	Assert(IsA(rrow, RowExpr));
    	largs = lrow->args;
    	rargs = rrow->args;
    
    	if (list_length(largs) != list_length(rargs))
    		ereport(ERROR,
    				(errcode(ERRCODE_SYNTAX_ERROR),
    				 errmsg("unequal number of entries in row expression")));
    
    	forboth(l, largs, r, rargs)
    	{
    		Node	   *larg = (Node *) lfirst(l);
    		Node	   *rarg = (Node *) lfirst(r);
    		Node	   *cmp;
    
    		cmp = (Node *) make_distinct_op(pstate, opname, larg, rarg);
    		if (result == NULL)
    			result = cmp;
    		else
    			result = (Node *) makeBoolExpr(OR_EXPR,
    										   list_make2(result, cmp));
    	}
    
    	if (result == NULL)
    	{
    		/* zero-length rows?  Generate constant FALSE */
    		result = makeBoolConst(false, false);
    	}
    
    	return result;
    }
    
    /*
     * make the node for an IS DISTINCT FROM operator
     */
    static Expr *
    make_distinct_op(ParseState *pstate, List *opname, Node *ltree, Node *rtree)
    {
    	Expr	   *result;
    
    	result = make_op(pstate, opname, ltree, rtree);
    	if (((OpExpr *) result)->opresulttype != BOOLOID)
    		ereport(ERROR,
    				(errcode(ERRCODE_DATATYPE_MISMATCH),
    		   errmsg("IS DISTINCT FROM requires = operator to yield boolean")));
    
    	/*
    	 * We rely on DistinctExpr and OpExpr being same struct
    	 */
    	NodeSetTag(result, T_DistinctExpr);
    
    	return result;
    }