-
Peter Eisentraut authored
position() and substring() functions, so that it works transparently for bit types as well. Alias the text functions appropriately. Add position() for bit types. Add new constant node T_BitString that represents literals of the form B'1001 and pass those to zpbit type.
Peter Eisentraut authoredposition() and substring() functions, so that it works transparently for bit types as well. Alias the text functions appropriately. Add position() for bit types. Add new constant node T_BitString that represents literals of the form B'1001 and pass those to zpbit type.
parse_node.c 14.49 KiB
/*-------------------------------------------------------------------------
*
* parse_node.c
* various routines that make nodes for query plans
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/parser/parse_node.c,v 1.48 2000/10/31 10:22:11 petere Exp $
*
*-------------------------------------------------------------------------
*/
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include "postgres.h"
#include "access/heapam.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_type.h"
#include "fmgr.h"
#include "nodes/makefuncs.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_node.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "parser/parse_target.h"
#include "parser/parse_type.h"
#include "utils/builtins.h"
#include "utils/varbit.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static bool fitsInFloat(Value *value);
/* make_parsestate()
* Allocate and initialize a new ParseState.
* The CALLER is responsible for freeing the ParseState* returned.
*/
ParseState *
make_parsestate(ParseState *parentParseState)
{
ParseState *pstate;
pstate = palloc(sizeof(ParseState));
MemSet(pstate, 0, sizeof(ParseState));
pstate->parentParseState = parentParseState;
pstate->p_last_resno = 1;
return pstate;
}
/* make_operand()
* Ensure argument type match by forcing conversion of constants.
*/
Node *
make_operand(char *opname,
Node *tree,
Oid orig_typeId,
Oid target_typeId)
{
Node *result;
Type target_type = typeidType(target_typeId);
if (tree != NULL)
{
/* must coerce? */
if (target_typeId != orig_typeId)
result = coerce_type(NULL, tree, orig_typeId, target_typeId, -1);
else
result = tree;
}
else
{
/* otherwise, this is a NULL value */
Const *con = makeNode(Const);
con->consttype = target_typeId;
con->constlen = typeLen(target_type);
con->constvalue = (Datum) NULL;
con->constisnull = true;
con->constbyval = typeByVal(target_type);
con->constisset = false;
result = (Node *) con;
}
return result;
} /* make_operand() */
/* make_op()
* Operator construction.
*
* Transform operator expression ensuring type compatibility.
* This is where some type conversion happens.
*/
Expr *
make_op(char *opname, Node *ltree, Node *rtree)
{
Oid ltypeId,
rtypeId;
Operator tup;
Form_pg_operator opform;
Oper *newop;
Node *left,
*right;
Expr *result;
ltypeId = (ltree == NULL) ? UNKNOWNOID : exprType(ltree);
rtypeId = (rtree == NULL) ? UNKNOWNOID : exprType(rtree);
/* right operator? */
if (rtree == NULL)
{
tup = right_oper(opname, ltypeId);
opform = (Form_pg_operator) GETSTRUCT(tup);
left = make_operand(opname, ltree, ltypeId, opform->oprleft);
right = NULL;
}
/* left operator? */
else if (ltree == NULL)
{
tup = left_oper(opname, rtypeId);
opform = (Form_pg_operator) GETSTRUCT(tup);
right = make_operand(opname, rtree, rtypeId, opform->oprright);
left = NULL;
}
/* otherwise, binary operator */
else
{
tup = oper(opname, ltypeId, rtypeId, FALSE);
opform = (Form_pg_operator) GETSTRUCT(tup);
left = make_operand(opname, ltree, ltypeId, opform->oprleft);
right = make_operand(opname, rtree, rtypeId, opform->oprright);
}
newop = makeOper(oprid(tup),/* opno */
InvalidOid,/* opid */
opform->oprresult); /* operator result type */
result = makeNode(Expr);
result->typeOid = opform->oprresult;
result->opType = OP_EXPR;
result->oper = (Node *) newop;
if (!left)
result->args = makeList1(right);
else if (!right)
result->args = makeList1(left);
else
result->args = makeList2(left, right);
return result;
} /* make_op() */
/*
* make_var
* Build a Var node for an attribute identified by RTE and attrno
*/
Var *
make_var(ParseState *pstate, RangeTblEntry *rte, int attrno)
{
int vnum,
sublevels_up;
Oid vartypeid = 0;
int32 type_mod = 0;
vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
if (rte->relid != InvalidOid)
{
/* Plain relation RTE --- get the attribute's type info */
HeapTuple tp;
Form_pg_attribute att_tup;
tp = SearchSysCacheTuple(ATTNUM,
ObjectIdGetDatum(rte->relid),
Int16GetDatum(attrno),
0, 0);
/* this shouldn't happen... */
if (!HeapTupleIsValid(tp))
elog(ERROR, "Relation %s does not have attribute %d",
rte->relname, attrno);
att_tup = (Form_pg_attribute) GETSTRUCT(tp);
vartypeid = att_tup->atttypid;
type_mod = att_tup->atttypmod;
}
else
{
/* Subselect RTE --- get type info from subselect's tlist */
List *tlistitem;
foreach(tlistitem, rte->subquery->targetList)
{
TargetEntry *te = (TargetEntry *) lfirst(tlistitem);
if (te->resdom->resjunk || te->resdom->resno != attrno)
continue;
vartypeid = te->resdom->restype;
type_mod = te->resdom->restypmod;
break;
}
/* falling off end of list shouldn't happen... */
if (tlistitem == NIL)
elog(ERROR, "Subquery %s does not have attribute %d",
rte->eref->relname, attrno);
}
return makeVar(vnum, attrno, vartypeid, type_mod, sublevels_up);
}
/*
* transformArraySubscripts()
* Transform array subscripting. This is used for both
* array fetch and array assignment.
*
* In an array fetch, we are given a source array value and we produce an
* expression that represents the result of extracting a single array element
* or an array slice.
*
* In an array assignment, we are given a destination array value plus a
* source value that is to be assigned to a single element or a slice of
* that array. We produce an expression that represents the new array value
* with the source data inserted into the right part of the array.
*
* pstate Parse state
* arrayBase Already-transformed expression for the array as a whole
* indirection Untransformed list of subscripts (must not be NIL)
* forceSlice If true, treat subscript as array slice in all cases
* assignFrom NULL for array fetch, else transformed expression for source.
*/
ArrayRef *
transformArraySubscripts(ParseState *pstate,
Node *arrayBase,
List *indirection,
bool forceSlice,
Node *assignFrom)
{
Oid typearray,
typeelement,
typeresult;
HeapTuple type_tuple;
Form_pg_type type_struct_array,
type_struct_element;
bool isSlice = forceSlice;
List *upperIndexpr = NIL;
List *lowerIndexpr = NIL;
List *idx;
ArrayRef *aref;
/* Get the type tuple for the array */
typearray = exprType(arrayBase);
type_tuple = SearchSysCacheTuple(TYPEOID,
ObjectIdGetDatum(typearray),
0, 0, 0);
if (!HeapTupleIsValid(type_tuple))
elog(ERROR, "transformArraySubscripts: Cache lookup failed for array type %u",
typearray);
type_struct_array = (Form_pg_type) GETSTRUCT(type_tuple);
typeelement = type_struct_array->typelem;
if (typeelement == InvalidOid)
elog(ERROR, "transformArraySubscripts: type %s is not an array",
NameStr(type_struct_array->typname));
/* Get the type tuple for the array element type */
type_tuple = SearchSysCacheTuple(TYPEOID,
ObjectIdGetDatum(typeelement),
0, 0, 0);
if (!HeapTupleIsValid(type_tuple))
elog(ERROR, "transformArraySubscripts: Cache lookup failed for array element type %u",
typeelement);
type_struct_element = (Form_pg_type) GETSTRUCT(type_tuple);
/*
* A list containing only single subscripts refers to a single array
* element. If any of the items are double subscripts (lower:upper),
* then the subscript expression means an array slice operation. In
* this case, we supply a default lower bound of 1 for any items that
* contain only a single subscript. The forceSlice parameter forces us
* to treat the operation as a slice, even if no lower bounds are
* mentioned. Otherwise, we have to prescan the indirection list to
* see if there are any double subscripts.
*/
if (!isSlice)
{
foreach(idx, indirection)
{
A_Indices *ai = (A_Indices *) lfirst(idx);
if (ai->lidx != NULL)
{
isSlice = true;
break;
}
}
}
/*
* The type represented by the subscript expression is the element
* type if we are fetching a single element, but it is the same as the
* array type if we are fetching a slice or storing.
*/
if (isSlice || assignFrom != NULL)
typeresult = typearray;
else
typeresult = typeelement;
/*
* Transform the subscript expressions.
*/
foreach(idx, indirection)
{
A_Indices *ai = (A_Indices *) lfirst(idx);
Node *subexpr;
if (isSlice)
{
if (ai->lidx)
{
subexpr = transformExpr(pstate, ai->lidx, EXPR_COLUMN_FIRST);
/* If it's not int4 already, try to coerce */
subexpr = CoerceTargetExpr(pstate, subexpr, exprType(subexpr),
INT4OID, -1);
if (subexpr == NULL)
elog(ERROR, "array index expressions must be integers");
}
else
{
/* Make a constant 1 */
subexpr = (Node *) makeConst(INT4OID,
sizeof(int32),
Int32GetDatum(1),
false,
true, /* pass by value */
false,
false);
}
lowerIndexpr = lappend(lowerIndexpr, subexpr);
}
subexpr = transformExpr(pstate, ai->uidx, EXPR_COLUMN_FIRST);
/* If it's not int4 already, try to coerce */
subexpr = CoerceTargetExpr(pstate, subexpr, exprType(subexpr),
INT4OID, -1);
if (subexpr == NULL)
elog(ERROR, "array index expressions must be integers");
upperIndexpr = lappend(upperIndexpr, subexpr);
}
/*
* If doing an array store, coerce the source value to the right type.
*/
if (assignFrom != NULL)
{
Oid typesource = exprType(assignFrom);
Oid typeneeded = isSlice ? typearray : typeelement;
if (typesource != InvalidOid)
{
if (typesource != typeneeded)
{
/* XXX fixme: need to get the array's atttypmod? */
assignFrom = CoerceTargetExpr(pstate, assignFrom,
typesource, typeneeded,
-1);
if (assignFrom == NULL)
elog(ERROR, "Array assignment requires type '%s'"
" but expression is of type '%s'"
"\n\tYou will need to rewrite or cast the expression",
typeidTypeName(typeneeded),
typeidTypeName(typesource));
}
}
}
/*
* Ready to build the ArrayRef node.
*/
aref = makeNode(ArrayRef);
aref->refattrlength = type_struct_array->typlen;
aref->refelemlength = type_struct_element->typlen;
aref->refelemtype = typeresult; /* XXX should save element type
* too */
aref->refelembyval = type_struct_element->typbyval;
aref->refupperindexpr = upperIndexpr;
aref->reflowerindexpr = lowerIndexpr;
aref->refexpr = arrayBase;
aref->refassgnexpr = assignFrom;
return aref;
}
/*
* make_const
*
* Convert a Value node (as returned by the grammar) to a Const node
* of the "natural" type for the constant. Note that this routine is
* only used when there is no explicit cast for the constant, so we
* have to guess what type is wanted.
*
* For string literals we produce a constant of type UNKNOWN ---- whose
* representation is the same as text, but it indicates to later type
* resolution that we're not sure that it should be considered text.
* Explicit "NULL" constants are also typed as UNKNOWN.
*
* For integers and floats we produce int4, float8, or numeric depending
* on the value of the number. XXX In some cases it would be nice to take
* context into account when determining the type to convert to, but in
* other cases we can't delay the type choice. One possibility is to invent
* a dummy type "UNKNOWNNUMERIC" that's treated similarly to UNKNOWN;
* that would allow us to do the right thing in examples like a simple
* INSERT INTO table (numericcolumn) VALUES (1.234), since we wouldn't
* have to resolve the unknown type until we knew the destination column
* type. On the other hand UNKNOWN has considerable problems of its own.
* We would not like "SELECT 1.2 + 3.4" to claim it can't choose a type.
*/
Const *
make_const(Value *value)
{
Datum val;
Oid typeid;
int typelen;
bool typebyval;
Const *con;
switch (nodeTag(value))
{
case T_Integer:
val = Int32GetDatum(intVal(value));
typeid = INT4OID;
typelen = sizeof(int32);
typebyval = true;
break;
case T_Float:
if (fitsInFloat(value))
{
val = Float8GetDatum(floatVal(value));
typeid = FLOAT8OID;
typelen = sizeof(float8);
typebyval = false; /* XXX might change someday */
}
else
{
val = DirectFunctionCall3(numeric_in,
CStringGetDatum(strVal(value)),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1));
typeid = NUMERICOID;
typelen = -1; /* variable len */
typebyval = false;
}
break;
case T_String:
val = DirectFunctionCall1(textin, CStringGetDatum(strVal(value)));
typeid = UNKNOWNOID;/* will be coerced later */
typelen = -1; /* variable len */
typebyval = false;
break;
case T_BitString:
val = DirectFunctionCall3(zpbit_in,
CStringGetDatum(strVal(value)),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1));
typeid = ZPBITOID;
typelen = -1;
typebyval = false;
break;
default:
elog(NOTICE, "make_const: unknown type %d", nodeTag(value));
/* FALLTHROUGH */
case T_Null:
/* return a null const */
con = makeConst(UNKNOWNOID,
-1,
(Datum) NULL,
true,
false,
false,
false);
return con;
}
con = makeConst(typeid,
typelen,
val,
false,
typebyval,
false, /* not a set */
false); /* not coerced */
return con;
}
/*
* Decide whether a T_Float value fits in float8, or must be treated as
* type "numeric". We check the number of digits and check for overflow/
* underflow. (With standard compilation options, Postgres' NUMERIC type
* can handle decimal exponents up to 1000, considerably more than most
* implementations of float8, so this is a sensible test.)
*/
static bool
fitsInFloat(Value *value)
{
const char *ptr;
int ndigits;
char *endptr;
/*
* Count digits, ignoring leading zeroes (but not trailing zeroes).
* DBL_DIG is the maximum safe number of digits for "double".
*/
ptr = strVal(value);
while (*ptr == '+' || *ptr == '-' || *ptr == '0' || *ptr == '.')
ptr++;
ndigits = 0;
for (; *ptr; ptr++)
{
if (isdigit((int) *ptr))
ndigits++;
else if (*ptr == 'e' || *ptr == 'E')
break; /* don't count digits in exponent */
}
if (ndigits > DBL_DIG)
return false;
/*
* Use strtod() to check for overflow/underflow.
*/
errno = 0;
(void) strtod(strVal(value), &endptr);
if (*endptr != '\0' || errno != 0)
return false;
return true;
}