Skip to content
Snippets Groups Projects
Select Git revision
  • benchmark-tools
  • postgres-lambda
  • master default
  • REL9_4_25
  • REL9_5_20
  • REL9_6_16
  • REL_10_11
  • REL_11_6
  • REL_12_1
  • REL_12_0
  • REL_12_RC1
  • REL_12_BETA4
  • REL9_4_24
  • REL9_5_19
  • REL9_6_15
  • REL_10_10
  • REL_11_5
  • REL_12_BETA3
  • REL9_4_23
  • REL9_5_18
  • REL9_6_14
  • REL_10_9
  • REL_11_4
23 results

parse_node.c

Blame
  • parse_node.c 14.45 KiB
    /*-------------------------------------------------------------------------
     *
     * parse_node.c
     *	  various routines that make nodes for querytrees
     *
     * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
     * Portions Copyright (c) 1994, Regents of the University of California
     *
     *
     * IDENTIFICATION
     *	  $PostgreSQL: pgsql/src/backend/parser/parse_node.c,v 1.104 2009/01/01 17:23:45 momjian Exp $
     *
     *-------------------------------------------------------------------------
     */
    #include "postgres.h"
    
    #include "access/heapam.h"
    #include "catalog/pg_type.h"
    #include "mb/pg_wchar.h"
    #include "nodes/makefuncs.h"
    #include "nodes/nodeFuncs.h"
    #include "parser/parsetree.h"
    #include "parser/parse_coerce.h"
    #include "parser/parse_expr.h"
    #include "parser/parse_relation.h"
    #include "utils/builtins.h"
    #include "utils/int8.h"
    #include "utils/syscache.h"
    #include "utils/varbit.h"
    
    
    static void pcb_error_callback(void *arg);
    
    
    /*
     * make_parsestate
     *		Allocate and initialize a new ParseState.
     *
     * Caller should eventually release the ParseState via free_parsestate().
     */
    ParseState *
    make_parsestate(ParseState *parentParseState)
    {
    	ParseState *pstate;
    
    	pstate = palloc0(sizeof(ParseState));
    
    	pstate->parentParseState = parentParseState;
    
    	/* Fill in fields that don't start at null/false/zero */
    	pstate->p_next_resno = 1;
    
    	if (parentParseState)
    	{
    		pstate->p_sourcetext = parentParseState->p_sourcetext;
    		pstate->p_variableparams = parentParseState->p_variableparams;
    	}
    
    	return pstate;
    }
    
    /*
     * free_parsestate
     *		Release a ParseState and any subsidiary resources.
     */
    void
    free_parsestate(ParseState *pstate)
    {
    	/*
    	 * Check that we did not produce too many resnos; at the very least we
    	 * cannot allow more than 2^16, since that would exceed the range of a
    	 * AttrNumber. It seems safest to use MaxTupleAttributeNumber.
    	 */
    	if (pstate->p_next_resno - 1 > MaxTupleAttributeNumber)
    		ereport(ERROR,
    				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
    				 errmsg("target lists can have at most %d entries",
    						MaxTupleAttributeNumber)));
    
    	if (pstate->p_target_relation != NULL)
    		heap_close(pstate->p_target_relation, NoLock);
    
    	pfree(pstate);
    }
    
    
    /*
     * parser_errposition
     *		Report a parse-analysis-time cursor position, if possible.
     *
     * This is expected to be used within an ereport() call.  The return value
     * is a dummy (always 0, in fact).
     *
     * The locations stored in raw parsetrees are byte offsets into the source
     * string.	We have to convert them to 1-based character indexes for reporting
     * to clients.	(We do things this way to avoid unnecessary overhead in the
     * normal non-error case: computing character indexes would be much more
     * expensive than storing token offsets.)
     */
    int
    parser_errposition(ParseState *pstate, int location)
    {
    	int			pos;
    
    	/* No-op if location was not provided */
    	if (location < 0)
    		return 0;
    	/* Can't do anything if source text is not available */
    	if (pstate == NULL || pstate->p_sourcetext == NULL)
    		return 0;
    	/* Convert offset to character number */
    	pos = pg_mbstrlen_with_len(pstate->p_sourcetext, location) + 1;
    	/* And pass it to the ereport mechanism */
    	return errposition(pos);
    }
    
    
    /*
     * setup_parser_errposition_callback
     *		Arrange for non-parser errors to report an error position
     *
     * Sometimes the parser calls functions that aren't part of the parser
     * subsystem and can't reasonably be passed a ParseState; yet we would
     * like any errors thrown in those functions to be tagged with a parse
     * error location.  Use this function to set up an error context stack
     * entry that will accomplish that.  Usage pattern:
     *
     *		declare a local variable "ParseCallbackState pcbstate"
     *		...
     *		setup_parser_errposition_callback(&pcbstate, pstate, location);
     *		call function that might throw error;
     *		cancel_parser_errposition_callback(&pcbstate);
     */
    void
    setup_parser_errposition_callback(ParseCallbackState *pcbstate,
    								  ParseState *pstate, int location)
    {
    	/* Setup error traceback support for ereport() */
    	pcbstate->pstate = pstate;
    	pcbstate->location = location;
    	pcbstate->errcontext.callback = pcb_error_callback;
    	pcbstate->errcontext.arg = (void *) pcbstate;
    	pcbstate->errcontext.previous = error_context_stack;
    	error_context_stack = &pcbstate->errcontext;
    }
    
    /*
     * Cancel a previously-set-up errposition callback.
     */
    void
    cancel_parser_errposition_callback(ParseCallbackState *pcbstate)
    {
    	/* Pop the error context stack */
    	error_context_stack = pcbstate->errcontext.previous;
    }
    
    /*
     * Error context callback for inserting parser error location.
     *
     * Note that this will be called for *any* error occurring while the
     * callback is installed.  We avoid inserting an irrelevant error location
     * if the error is a query cancel --- are there any other important cases?
     */
    static void
    pcb_error_callback(void *arg)
    {
    	ParseCallbackState *pcbstate = (ParseCallbackState *) arg;
    
    	if (geterrcode() != ERRCODE_QUERY_CANCELED)
    		(void) parser_errposition(pcbstate->pstate, pcbstate->location);
    }
    
    
    /*
     * make_var
     *		Build a Var node for an attribute identified by RTE and attrno
     */
    Var *
    make_var(ParseState *pstate, RangeTblEntry *rte, int attrno, int location)
    {
    	Var		   *result;
    	int			vnum,
    				sublevels_up;
    	Oid			vartypeid;
    	int32		type_mod;
    
    	vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
    	get_rte_attribute_type(rte, attrno, &vartypeid, &type_mod);
    	result = makeVar(vnum, attrno, vartypeid, type_mod, sublevels_up);
    	result->location = location;
    	return result;
    }
    
    /*
     * transformArrayType()
     *		Get the element type of an array type in preparation for subscripting
     */
    Oid
    transformArrayType(Oid arrayType)
    {
    	Oid			elementType;
    	HeapTuple	type_tuple_array;
    	Form_pg_type type_struct_array;
    
    	/* Get the type tuple for the array */
    	type_tuple_array = SearchSysCache(TYPEOID,
    									  ObjectIdGetDatum(arrayType),
    									  0, 0, 0);
    	if (!HeapTupleIsValid(type_tuple_array))
    		elog(ERROR, "cache lookup failed for type %u", arrayType);
    	type_struct_array = (Form_pg_type) GETSTRUCT(type_tuple_array);
    
    	/* needn't check typisdefined since this will fail anyway */
    
    	elementType = type_struct_array->typelem;
    	if (elementType == InvalidOid)
    		ereport(ERROR,
    				(errcode(ERRCODE_DATATYPE_MISMATCH),
    				 errmsg("cannot subscript type %s because it is not an array",
    						format_type_be(arrayType))));
    
    	ReleaseSysCache(type_tuple_array);
    
    	return elementType;
    }
    
    /*
     * transformArraySubscripts()
     *		Transform array subscripting.  This is used for both
     *		array fetch and array assignment.
     *
     * In an array fetch, we are given a source array value and we produce an
     * expression that represents the result of extracting a single array element
     * or an array slice.
     *
     * In an array assignment, we are given a destination array value plus a
     * source value that is to be assigned to a single element or a slice of
     * that array.	We produce an expression that represents the new array value
     * with the source data inserted into the right part of the array.
     *
     * pstate		Parse state
     * arrayBase	Already-transformed expression for the array as a whole
     * arrayType	OID of array's datatype (should match type of arrayBase)
     * elementType	OID of array's element type (fetch with transformArrayType,
     *				or pass InvalidOid to do it here)
     * elementTypMod typmod to be applied to array elements (if storing) or of
     *				the source array (if fetching)
     * indirection	Untransformed list of subscripts (must not be NIL)
     * assignFrom	NULL for array fetch, else transformed expression for source.
     */
    ArrayRef *
    transformArraySubscripts(ParseState *pstate,
    						 Node *arrayBase,
    						 Oid arrayType,
    						 Oid elementType,
    						 int32 elementTypMod,
    						 List *indirection,
    						 Node *assignFrom)
    {
    	bool		isSlice = false;
    	List	   *upperIndexpr = NIL;
    	List	   *lowerIndexpr = NIL;
    	ListCell   *idx;
    	ArrayRef   *aref;
    
    	/* Caller may or may not have bothered to determine elementType */
    	if (!OidIsValid(elementType))
    		elementType = transformArrayType(arrayType);
    
    	/*
    	 * A list containing only single subscripts refers to a single array
    	 * element.  If any of the items are double subscripts (lower:upper), then
    	 * the subscript expression means an array slice operation. In this case,
    	 * we supply a default lower bound of 1 for any items that contain only a
    	 * single subscript.  We have to prescan the indirection list to see if
    	 * there are any double subscripts.
    	 */
    	foreach(idx, indirection)
    	{
    		A_Indices  *ai = (A_Indices *) lfirst(idx);
    
    		if (ai->lidx != NULL)
    		{
    			isSlice = true;
    			break;
    		}
    	}
    
    	/*
    	 * Transform the subscript expressions.
    	 */
    	foreach(idx, indirection)
    	{
    		A_Indices  *ai = (A_Indices *) lfirst(idx);
    		Node	   *subexpr;
    
    		Assert(IsA(ai, A_Indices));
    		if (isSlice)
    		{
    			if (ai->lidx)
    			{
    				subexpr = transformExpr(pstate, ai->lidx);
    				/* If it's not int4 already, try to coerce */
    				subexpr = coerce_to_target_type(pstate,
    												subexpr, exprType(subexpr),
    												INT4OID, -1,
    												COERCION_ASSIGNMENT,
    												COERCE_IMPLICIT_CAST,
    												-1);
    				if (subexpr == NULL)
    					ereport(ERROR,
    							(errcode(ERRCODE_DATATYPE_MISMATCH),
    							 errmsg("array subscript must have type integer"),
    							 parser_errposition(pstate, exprLocation(ai->lidx))));
    			}
    			else
    			{
    				/* Make a constant 1 */
    				subexpr = (Node *) makeConst(INT4OID,
    											 -1,
    											 sizeof(int32),
    											 Int32GetDatum(1),
    											 false,
    											 true);		/* pass by value */
    			}
    			lowerIndexpr = lappend(lowerIndexpr, subexpr);
    		}
    		subexpr = transformExpr(pstate, ai->uidx);
    		/* If it's not int4 already, try to coerce */
    		subexpr = coerce_to_target_type(pstate,
    										subexpr, exprType(subexpr),
    										INT4OID, -1,
    										COERCION_ASSIGNMENT,
    										COERCE_IMPLICIT_CAST,
    										-1);
    		if (subexpr == NULL)
    			ereport(ERROR,
    					(errcode(ERRCODE_DATATYPE_MISMATCH),
    					 errmsg("array subscript must have type integer"),
    					 parser_errposition(pstate, exprLocation(ai->uidx))));
    		upperIndexpr = lappend(upperIndexpr, subexpr);
    	}
    
    	/*
    	 * If doing an array store, coerce the source value to the right type.
    	 * (This should agree with the coercion done by transformAssignedExpr.)
    	 */
    	if (assignFrom != NULL)
    	{
    		Oid			typesource = exprType(assignFrom);
    		Oid			typeneeded = isSlice ? arrayType : elementType;
    		Node	   *newFrom;
    
    		newFrom = coerce_to_target_type(pstate,
    										assignFrom, typesource,
    										typeneeded, elementTypMod,
    										COERCION_ASSIGNMENT,
    										COERCE_IMPLICIT_CAST,
    										-1);
    		if (newFrom == NULL)
    			ereport(ERROR,
    					(errcode(ERRCODE_DATATYPE_MISMATCH),
    					 errmsg("array assignment requires type %s"
    							" but expression is of type %s",
    							format_type_be(typeneeded),
    							format_type_be(typesource)),
    			   errhint("You will need to rewrite or cast the expression."),
    					 parser_errposition(pstate, exprLocation(assignFrom))));
    		assignFrom = newFrom;
    	}
    
    	/*
    	 * Ready to build the ArrayRef node.
    	 */
    	aref = makeNode(ArrayRef);
    	aref->refarraytype = arrayType;
    	aref->refelemtype = elementType;
    	aref->reftypmod = elementTypMod;
    	aref->refupperindexpr = upperIndexpr;
    	aref->reflowerindexpr = lowerIndexpr;
    	aref->refexpr = (Expr *) arrayBase;
    	aref->refassgnexpr = (Expr *) assignFrom;
    
    	return aref;
    }
    
    /*
     * make_const
     *
     *	Convert a Value node (as returned by the grammar) to a Const node
     *	of the "natural" type for the constant.  Note that this routine is
     *	only used when there is no explicit cast for the constant, so we
     *	have to guess what type is wanted.
     *
     *	For string literals we produce a constant of type UNKNOWN ---- whose
     *	representation is the same as cstring, but it indicates to later type
     *	resolution that we're not sure yet what type it should be considered.
     *	Explicit "NULL" constants are also typed as UNKNOWN.
     *
     *	For integers and floats we produce int4, int8, or numeric depending
     *	on the value of the number.  XXX We should produce int2 as well,
     *	but additional cleanup is needed before we can do that; there are
     *	too many examples that fail if we try.
     */
    Const *
    make_const(ParseState *pstate, Value *value, int location)
    {
    	Const	   *con;
    	Datum		val;
    	int64		val64;
    	Oid			typeid;
    	int			typelen;
    	bool		typebyval;
    	ParseCallbackState pcbstate;
    
    	switch (nodeTag(value))
    	{
    		case T_Integer:
    			val = Int32GetDatum(intVal(value));
    
    			typeid = INT4OID;
    			typelen = sizeof(int32);
    			typebyval = true;
    			break;
    
    		case T_Float:
    			/* could be an oversize integer as well as a float ... */
    			if (scanint8(strVal(value), true, &val64))
    			{
    				/*
    				 * It might actually fit in int32. Probably only INT_MIN can
    				 * occur, but we'll code the test generally just to be sure.
    				 */
    				int32		val32 = (int32) val64;
    
    				if (val64 == (int64) val32)
    				{
    					val = Int32GetDatum(val32);
    
    					typeid = INT4OID;
    					typelen = sizeof(int32);
    					typebyval = true;
    				}
    				else
    				{
    					val = Int64GetDatum(val64);
    
    					typeid = INT8OID;
    					typelen = sizeof(int64);
    					typebyval = FLOAT8PASSBYVAL;	/* int8 and float8 alike */
    				}
    			}
    			else
    			{
    				/* arrange to report location if numeric_in() fails */
    				setup_parser_errposition_callback(&pcbstate, pstate, location);
    				val = DirectFunctionCall3(numeric_in,
    										  CStringGetDatum(strVal(value)),
    										  ObjectIdGetDatum(InvalidOid),
    										  Int32GetDatum(-1));
    				cancel_parser_errposition_callback(&pcbstate);
    
    				typeid = NUMERICOID;
    				typelen = -1;	/* variable len */
    				typebyval = false;
    			}
    			break;
    
    		case T_String:
    
    			/*
    			 * We assume here that UNKNOWN's internal representation is the
    			 * same as CSTRING
    			 */
    			val = CStringGetDatum(strVal(value));
    
    			typeid = UNKNOWNOID;	/* will be coerced later */
    			typelen = -2;		/* cstring-style varwidth type */
    			typebyval = false;
    			break;
    
    		case T_BitString:
    			/* arrange to report location if bit_in() fails */
    			setup_parser_errposition_callback(&pcbstate, pstate, location);
    			val = DirectFunctionCall3(bit_in,
    									  CStringGetDatum(strVal(value)),
    									  ObjectIdGetDatum(InvalidOid),
    									  Int32GetDatum(-1));
    			cancel_parser_errposition_callback(&pcbstate);
    			typeid = BITOID;
    			typelen = -1;
    			typebyval = false;
    			break;
    
    		case T_Null:
    			/* return a null const */
    			con = makeConst(UNKNOWNOID,
    							-1,
    							-2,
    							(Datum) 0,
    							true,
    							false);
    			con->location = location;
    			return con;
    
    		default:
    			elog(ERROR, "unrecognized node type: %d", (int) nodeTag(value));
    			return NULL;		/* keep compiler quiet */
    	}
    
    	con = makeConst(typeid,
    					-1,			/* typmod -1 is OK for all cases */
    					typelen,
    					val,
    					false,
    					typebyval);
    	con->location = location;
    
    	return con;
    }