Skip to content
Snippets Groups Projects
Select Git revision
  • benchmark-tools
  • postgres-lambda
  • master default
  • REL9_4_25
  • REL9_5_20
  • REL9_6_16
  • REL_10_11
  • REL_11_6
  • REL_12_1
  • REL_12_0
  • REL_12_RC1
  • REL_12_BETA4
  • REL9_4_24
  • REL9_5_19
  • REL9_6_15
  • REL_10_10
  • REL_11_5
  • REL_12_BETA3
  • REL9_4_23
  • REL9_5_18
  • REL9_6_14
  • REL_10_9
  • REL_11_4
23 results

nodeFunctionscan.c

Blame
  • nodeFunctionscan.c 16.59 KiB
    /*-------------------------------------------------------------------------
     *
     * nodeFunctionscan.c
     *	  Support routines for scanning RangeFunctions (functions in rangetable).
     *
     * Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
     * Portions Copyright (c) 1994, Regents of the University of California
     *
     *
     * IDENTIFICATION
     *	  src/backend/executor/nodeFunctionscan.c
     *
     *-------------------------------------------------------------------------
     */
    /*
     * INTERFACE ROUTINES
     *		ExecFunctionScan		scans a function.
     *		ExecFunctionNext		retrieve next tuple in sequential order.
     *		ExecInitFunctionScan	creates and initializes a functionscan node.
     *		ExecEndFunctionScan		releases any storage allocated.
     *		ExecReScanFunctionScan	rescans the function
     */
    #include "postgres.h"
    
    #include "catalog/pg_type.h"
    #include "executor/nodeFunctionscan.h"
    #include "funcapi.h"
    #include "nodes/nodeFuncs.h"
    #include "utils/builtins.h"
    #include "utils/memutils.h"
    
    
    /*
     * Runtime data for each function being scanned.
     */
    typedef struct FunctionScanPerFuncState
    {
    	ExprState  *funcexpr;		/* state of the expression being evaluated */
    	TupleDesc	tupdesc;		/* desc of the function result type */
    	int			colcount;		/* expected number of result columns */
    	Tuplestorestate *tstore;	/* holds the function result set */
    	int64		rowcount;		/* # of rows in result set, -1 if not known */
    	TupleTableSlot *func_slot;	/* function result slot (or NULL) */
    } FunctionScanPerFuncState;
    
    static TupleTableSlot *FunctionNext(FunctionScanState *node);
    
    
    /* ----------------------------------------------------------------
     *						Scan Support
     * ----------------------------------------------------------------
     */
    /* ----------------------------------------------------------------
     *		FunctionNext
     *
     *		This is a workhorse for ExecFunctionScan
     * ----------------------------------------------------------------
     */
    static TupleTableSlot *
    FunctionNext(FunctionScanState *node)
    {
    	EState	   *estate;
    	ScanDirection direction;
    	TupleTableSlot *scanslot;
    	bool		alldone;
    	int64		oldpos;
    	int			funcno;
    	int			att;
    
    	/*
    	 * get information from the estate and scan state
    	 */
    	estate = node->ss.ps.state;
    	direction = estate->es_direction;
    	scanslot = node->ss.ss_ScanTupleSlot;
    
    	if (node->simple)
    	{
    		/*
    		 * Fast path for the trivial case: the function return type and scan
    		 * result type are the same, so we fetch the function result straight
    		 * into the scan result slot. No need to update ordinality or
    		 * rowcounts either.
    		 */
    		Tuplestorestate *tstore = node->funcstates[0].tstore;
    
    		/*
    		 * If first time through, read all tuples from function and put them
    		 * in a tuplestore. Subsequent calls just fetch tuples from
    		 * tuplestore.
    		 */
    		if (tstore == NULL)
    		{
    			node->funcstates[0].tstore = tstore =
    				ExecMakeTableFunctionResult(node->funcstates[0].funcexpr,
    											node->ss.ps.ps_ExprContext,
    											node->argcontext,
    											node->funcstates[0].tupdesc,
    										  node->eflags & EXEC_FLAG_BACKWARD);
    
    			/*
    			 * paranoia - cope if the function, which may have constructed the
    			 * tuplestore itself, didn't leave it pointing at the start. This
    			 * call is fast, so the overhead shouldn't be an issue.
    			 */
    			tuplestore_rescan(tstore);
    		}
    
    		/*
    		 * Get the next tuple from tuplestore.
    		 */
    		(void) tuplestore_gettupleslot(tstore,
    									   ScanDirectionIsForward(direction),
    									   false,
    									   scanslot);
    		return scanslot;
    	}
    
    	/*
    	 * Increment or decrement ordinal counter before checking for end-of-data,
    	 * so that we can move off either end of the result by 1 (and no more than
    	 * 1) without losing correct count.  See PortalRunSelect for why we can
    	 * assume that we won't be called repeatedly in the end-of-data state.
    	 */
    	oldpos = node->ordinal;
    	if (ScanDirectionIsForward(direction))
    		node->ordinal++;
    	else
    		node->ordinal--;
    
    	/*
    	 * Main loop over functions.
    	 *
    	 * We fetch the function results into func_slots (which match the function
    	 * return types), and then copy the values to scanslot (which matches the
    	 * scan result type), setting the ordinal column (if any) as well.
    	 */
    	ExecClearTuple(scanslot);
    	att = 0;
    	alldone = true;
    	for (funcno = 0; funcno < node->nfuncs; funcno++)
    	{
    		FunctionScanPerFuncState *fs = &node->funcstates[funcno];
    		int			i;
    
    		/*
    		 * If first time through, read all tuples from function and put them
    		 * in a tuplestore. Subsequent calls just fetch tuples from
    		 * tuplestore.
    		 */
    		if (fs->tstore == NULL)
    		{
    			fs->tstore =
    				ExecMakeTableFunctionResult(fs->funcexpr,
    											node->ss.ps.ps_ExprContext,
    											node->argcontext,
    											fs->tupdesc,
    										  node->eflags & EXEC_FLAG_BACKWARD);
    
    			/*
    			 * paranoia - cope if the function, which may have constructed the
    			 * tuplestore itself, didn't leave it pointing at the start. This
    			 * call is fast, so the overhead shouldn't be an issue.
    			 */
    			tuplestore_rescan(fs->tstore);
    		}
    
    		/*
    		 * Get the next tuple from tuplestore.
    		 *
    		 * If we have a rowcount for the function, and we know the previous
    		 * read position was out of bounds, don't try the read. This allows
    		 * backward scan to work when there are mixed row counts present.
    		 */
    		if (fs->rowcount != -1 && fs->rowcount < oldpos)
    			ExecClearTuple(fs->func_slot);
    		else
    			(void) tuplestore_gettupleslot(fs->tstore,
    										   ScanDirectionIsForward(direction),
    										   false,
    										   fs->func_slot);
    
    		if (TupIsNull(fs->func_slot))
    		{
    			/*
    			 * If we ran out of data for this function in the forward
    			 * direction then we now know how many rows it returned. We need
    			 * to know this in order to handle backwards scans. The row count
    			 * we store is actually 1+ the actual number, because we have to
    			 * position the tuplestore 1 off its end sometimes.
    			 */
    			if (ScanDirectionIsForward(direction) && fs->rowcount == -1)
    				fs->rowcount = node->ordinal;
    
    			/*
    			 * populate the result cols with nulls
    			 */
    			for (i = 0; i < fs->colcount; i++)
    			{
    				scanslot->tts_values[att] = (Datum) 0;
    				scanslot->tts_isnull[att] = true;
    				att++;
    			}
    		}
    		else
    		{
    			/*
    			 * we have a result, so just copy it to the result cols.
    			 */
    			slot_getallattrs(fs->func_slot);
    
    			for (i = 0; i < fs->colcount; i++)
    			{
    				scanslot->tts_values[att] = fs->func_slot->tts_values[i];
    				scanslot->tts_isnull[att] = fs->func_slot->tts_isnull[i];
    				att++;
    			}
    
    			/*
    			 * We're not done until every function result is exhausted; we pad
    			 * the shorter results with nulls until then.
    			 */
    			alldone = false;
    		}
    	}
    
    	/*
    	 * ordinal col is always last, per spec.
    	 */
    	if (node->ordinality)
    	{
    		scanslot->tts_values[att] = Int64GetDatumFast(node->ordinal);
    		scanslot->tts_isnull[att] = false;
    	}
    
    	/*
    	 * If alldone, we just return the previously-cleared scanslot.  Otherwise,
    	 * finish creating the virtual tuple.
    	 */
    	if (!alldone)
    		ExecStoreVirtualTuple(scanslot);
    
    	return scanslot;
    }
    
    /*
     * FunctionRecheck -- access method routine to recheck a tuple in EvalPlanQual
     */
    static bool
    FunctionRecheck(FunctionScanState *node, TupleTableSlot *slot)
    {
    	/* nothing to check */
    	return true;
    }
    
    /* ----------------------------------------------------------------
     *		ExecFunctionScan(node)
     *
     *		Scans the function sequentially and returns the next qualifying
     *		tuple.
     *		We call the ExecScan() routine and pass it the appropriate
     *		access method functions.
     * ----------------------------------------------------------------
     */
    TupleTableSlot *
    ExecFunctionScan(FunctionScanState *node)
    {
    	return ExecScan(&node->ss,
    					(ExecScanAccessMtd) FunctionNext,
    					(ExecScanRecheckMtd) FunctionRecheck);
    }
    
    /* ----------------------------------------------------------------
     *		ExecInitFunctionScan
     * ----------------------------------------------------------------
     */
    FunctionScanState *
    ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
    {
    	FunctionScanState *scanstate;
    	int			nfuncs = list_length(node->functions);
    	TupleDesc	scan_tupdesc;
    	int			i,
    				natts;
    	ListCell   *lc;
    
    	/* check for unsupported flags */
    	Assert(!(eflags & EXEC_FLAG_MARK));
    
    	/*
    	 * FunctionScan should not have any children.
    	 */
    	Assert(outerPlan(node) == NULL);
    	Assert(innerPlan(node) == NULL);
    
    	/*
    	 * create new ScanState for node
    	 */
    	scanstate = makeNode(FunctionScanState);
    	scanstate->ss.ps.plan = (Plan *) node;
    	scanstate->ss.ps.state = estate;
    	scanstate->eflags = eflags;
    
    	/*
    	 * are we adding an ordinality column?
    	 */
    	scanstate->ordinality = node->funcordinality;
    
    	scanstate->nfuncs = nfuncs;
    	if (nfuncs == 1 && !node->funcordinality)
    		scanstate->simple = true;
    	else
    		scanstate->simple = false;
    
    	/*
    	 * Ordinal 0 represents the "before the first row" position.
    	 *
    	 * We need to track ordinal position even when not adding an ordinality
    	 * column to the result, in order to handle backwards scanning properly
    	 * with multiple functions with different result sizes. (We can't position
    	 * any individual function's tuplestore any more than 1 place beyond its
    	 * end, so when scanning backwards, we need to know when to start
    	 * including the function in the scan again.)
    	 */
    	scanstate->ordinal = 0;
    
    	/*
    	 * Miscellaneous initialization
    	 *
    	 * create expression context for node
    	 */
    	ExecAssignExprContext(estate, &scanstate->ss.ps);
    
    	scanstate->ss.ps.ps_TupFromTlist = false;
    
    	/*
    	 * tuple table initialization
    	 */
    	ExecInitResultTupleSlot(estate, &scanstate->ss.ps);
    	ExecInitScanTupleSlot(estate, &scanstate->ss);
    
    	/*
    	 * initialize child expressions
    	 */
    	scanstate->ss.ps.targetlist = (List *)
    		ExecInitExpr((Expr *) node->scan.plan.targetlist,
    					 (PlanState *) scanstate);
    	scanstate->ss.ps.qual = (List *)
    		ExecInitExpr((Expr *) node->scan.plan.qual,
    					 (PlanState *) scanstate);
    
    	scanstate->funcstates = palloc(nfuncs * sizeof(FunctionScanPerFuncState));
    
    	natts = 0;
    	i = 0;
    	foreach(lc, node->functions)
    	{
    		RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
    		Node	   *funcexpr = rtfunc->funcexpr;
    		int			colcount = rtfunc->funccolcount;
    		FunctionScanPerFuncState *fs = &scanstate->funcstates[i];
    		TypeFuncClass functypclass;
    		Oid			funcrettype;
    		TupleDesc	tupdesc;
    
    		fs->funcexpr = ExecInitExpr((Expr *) funcexpr, (PlanState *) scanstate);
    
    		/*
    		 * Don't allocate the tuplestores; the actual calls to the functions
    		 * do that.  NULL means that we have not called the function yet (or
    		 * need to call it again after a rescan).
    		 */
    		fs->tstore = NULL;
    		fs->rowcount = -1;
    
    		/*
    		 * Now determine if the function returns a simple or composite type,
    		 * and build an appropriate tupdesc.  Note that in the composite case,
    		 * the function may now return more columns than it did when the plan
    		 * was made; we have to ignore any columns beyond "colcount".
    		 */
    		functypclass = get_expr_result_type(funcexpr,
    											&funcrettype,
    											&tupdesc);
    
    		if (functypclass == TYPEFUNC_COMPOSITE)
    		{
    			/* Composite data type, e.g. a table's row type */
    			Assert(tupdesc);
    			Assert(tupdesc->natts >= colcount);
    			/* Must copy it out of typcache for safety */
    			tupdesc = CreateTupleDescCopy(tupdesc);
    		}
    		else if (functypclass == TYPEFUNC_SCALAR)
    		{
    			/* Base data type, i.e. scalar */
    			tupdesc = CreateTemplateTupleDesc(1, false);
    			TupleDescInitEntry(tupdesc,
    							   (AttrNumber) 1,
    							   NULL,	/* don't care about the name here */
    							   funcrettype,
    							   -1,
    							   0);
    			TupleDescInitEntryCollation(tupdesc,
    										(AttrNumber) 1,
    										exprCollation(funcexpr));
    		}
    		else if (functypclass == TYPEFUNC_RECORD)
    		{
    			tupdesc = BuildDescFromLists(rtfunc->funccolnames,
    										 rtfunc->funccoltypes,
    										 rtfunc->funccoltypmods,
    										 rtfunc->funccolcollations);
    
    			/*
    			 * For RECORD results, make sure a typmod has been assigned.  (The
    			 * function should do this for itself, but let's cover things in
    			 * case it doesn't.)
    			 */
    			BlessTupleDesc(tupdesc);
    		}
    		else
    		{
    			/* crummy error message, but parser should have caught this */
    			elog(ERROR, "function in FROM has unsupported return type");
    		}
    
    		fs->tupdesc = tupdesc;
    		fs->colcount = colcount;
    
    		/*
    		 * We only need separate slots for the function results if we are
    		 * doing ordinality or multiple functions; otherwise, we'll fetch
    		 * function results directly into the scan slot.
    		 */
    		if (!scanstate->simple)
    		{
    			fs->func_slot = ExecInitExtraTupleSlot(estate);
    			ExecSetSlotDescriptor(fs->func_slot, fs->tupdesc);
    		}
    		else
    			fs->func_slot = NULL;
    
    		natts += colcount;
    		i++;
    	}
    
    	/*
    	 * Create the combined TupleDesc
    	 *
    	 * If there is just one function without ordinality, the scan result
    	 * tupdesc is the same as the function result tupdesc --- except that we
    	 * may stuff new names into it below, so drop any rowtype label.
    	 */
    	if (scanstate->simple)
    	{
    		scan_tupdesc = CreateTupleDescCopy(scanstate->funcstates[0].tupdesc);
    		scan_tupdesc->tdtypeid = RECORDOID;
    		scan_tupdesc->tdtypmod = -1;
    	}
    	else
    	{
    		AttrNumber	attno = 0;
    
    		if (node->funcordinality)
    			natts++;
    
    		scan_tupdesc = CreateTemplateTupleDesc(natts, false);
    
    		for (i = 0; i < nfuncs; i++)
    		{
    			TupleDesc	tupdesc = scanstate->funcstates[i].tupdesc;
    			int			colcount = scanstate->funcstates[i].colcount;
    			int			j;
    
    			for (j = 1; j <= colcount; j++)
    				TupleDescCopyEntry(scan_tupdesc, ++attno, tupdesc, j);
    		}
    
    		/* If doing ordinality, add a column of type "bigint" at the end */
    		if (node->funcordinality)
    		{
    			TupleDescInitEntry(scan_tupdesc,
    							   ++attno,
    							   NULL,	/* don't care about the name here */
    							   INT8OID,
    							   -1,
    							   0);
    		}
    
    		Assert(attno == natts);
    	}
    
    	ExecAssignScanType(&scanstate->ss, scan_tupdesc);
    
    	/*
    	 * Initialize result tuple type and projection info.
    	 */
    	ExecAssignResultTypeFromTL(&scanstate->ss.ps);
    	ExecAssignScanProjectionInfo(&scanstate->ss);
    
    	/*
    	 * Create a memory context that ExecMakeTableFunctionResult can use to
    	 * evaluate function arguments in.  We can't use the per-tuple context for
    	 * this because it gets reset too often; but we don't want to leak
    	 * evaluation results into the query-lifespan context either.  We just
    	 * need one context, because we evaluate each function separately.
    	 */
    	scanstate->argcontext = AllocSetContextCreate(CurrentMemoryContext,
    												  "Table function arguments",
    												  ALLOCSET_DEFAULT_MINSIZE,
    												  ALLOCSET_DEFAULT_INITSIZE,
    												  ALLOCSET_DEFAULT_MAXSIZE);
    
    	return scanstate;
    }
    
    /* ----------------------------------------------------------------
     *		ExecEndFunctionScan
     *
     *		frees any storage allocated through C routines.
     * ----------------------------------------------------------------
     */
    void
    ExecEndFunctionScan(FunctionScanState *node)
    {
    	int			i;
    
    	/*
    	 * Free the exprcontext
    	 */
    	ExecFreeExprContext(&node->ss.ps);
    
    	/*
    	 * clean out the tuple table
    	 */
    	ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
    	ExecClearTuple(node->ss.ss_ScanTupleSlot);
    
    	/*
    	 * Release slots and tuplestore resources
    	 */
    	for (i = 0; i < node->nfuncs; i++)
    	{
    		FunctionScanPerFuncState *fs = &node->funcstates[i];
    
    		if (fs->func_slot)
    			ExecClearTuple(fs->func_slot);
    
    		if (fs->tstore != NULL)
    		{
    			tuplestore_end(node->funcstates[i].tstore);
    			fs->tstore = NULL;
    		}
    	}
    }
    
    /* ----------------------------------------------------------------
     *		ExecReScanFunctionScan
     *
     *		Rescans the relation.
     * ----------------------------------------------------------------
     */
    void
    ExecReScanFunctionScan(FunctionScanState *node)
    {
    	FunctionScan *scan = (FunctionScan *) node->ss.ps.plan;
    	int			i;
    	Bitmapset  *chgparam = node->ss.ps.chgParam;
    
    	ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
    	for (i = 0; i < node->nfuncs; i++)
    	{
    		FunctionScanPerFuncState *fs = &node->funcstates[i];
    
    		if (fs->func_slot)
    			ExecClearTuple(fs->func_slot);
    	}
    
    	ExecScanReScan(&node->ss);
    
    	/*
    	 * Here we have a choice whether to drop the tuplestores (and recompute
    	 * the function outputs) or just rescan them.  We must recompute if an
    	 * expression contains changed parameters, else we rescan.
    	 *
    	 * XXX maybe we should recompute if the function is volatile?  But in
    	 * general the executor doesn't conditionalize its actions on that.
    	 */
    	if (chgparam)
    	{
    		ListCell   *lc;
    
    		i = 0;
    		foreach(lc, scan->functions)
    		{
    			RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
    
    			if (bms_overlap(chgparam, rtfunc->funcparams))
    			{
    				if (node->funcstates[i].tstore != NULL)
    				{
    					tuplestore_end(node->funcstates[i].tstore);
    					node->funcstates[i].tstore = NULL;
    				}
    				node->funcstates[i].rowcount = -1;
    			}
    			i++;
    		}
    	}
    
    	/* Reset ordinality counter */
    	node->ordinal = 0;
    
    	/* Make sure we rewind any remaining tuplestores */
    	for (i = 0; i < node->nfuncs; i++)
    	{
    		if (node->funcstates[i].tstore != NULL)
    			tuplestore_rescan(node->funcstates[i].tstore);
    	}
    }