Select Git revision
nodeIndexscan.c
-
Bruce Momjian authored
Another PGINDENT run that changes variable indenting and case label indenting. Also static variable indenting.
Bruce Momjian authoredAnother PGINDENT run that changes variable indenting and case label indenting. Also static variable indenting.
nodeIndexscan.c 25.88 KiB
/*-------------------------------------------------------------------------
*
* nodeIndexscan.c--
* Routines to support indexes and indexed scans of relations
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeIndexscan.c,v 1.9 1997/09/08 02:22:44 momjian Exp $
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecInsertIndexTuples inserts tuples into indices on result relation
*
* ExecIndexScan scans a relation using indices
* ExecIndexNext using index to retrieve next tuple
* ExecInitIndexScan creates and initializes state info.
* ExecIndexReScan rescans the indexed relation.
* ExecEndIndexScan releases all storage.
* ExecIndexMarkPos marks scan position.
* ExecIndexRestrPos restores scan position.
*
* NOTES
* the code supporting ExecInsertIndexTuples should be
* collected and merged with the genam stuff.
*
*/
#include "postgres.h"
#include "executor/executor.h"
#include "executor/execdebug.h"
#include "executor/nodeIndexscan.h"
#include "optimizer/clauses.h" /* for get_op, get_leftop, get_rightop */
#include "parser/parsetree.h" /* for rt_fetch() */
#include "access/skey.h"
#include "access/heapam.h"
#include "access/genam.h"
#include "utils/palloc.h"
#include "utils/mcxt.h"
#include "catalog/index.h"
#include "storage/bufmgr.h"
#include "storage/lmgr.h"
#include "nodes/nodeFuncs.h"
/* ----------------
* Misc stuff to move to executor.h soon -cim 6/5/90
* ----------------
*/
#define NO_OP 0
#define LEFT_OP 1
#define RIGHT_OP 2
static TupleTableSlot *IndexNext(IndexScan * node);
/* ----------------------------------------------------------------
* IndexNext
*
* Retrieve a tuple from the IndexScan node's currentRelation
* using the indices in the IndexScanState information.
*
* note: the old code mentions 'Primary indices'. to my knowledge
* we only support a single secondary index. -cim 9/11/89
*
* old comments:
* retrieve a tuple from relation using the indices given.
* The indices are used in the order they appear in 'indices'.
* The indices may be primary or secondary indices:
* * primary index -- scan the relation 'relID' using keys supplied.
* * secondary index -- scan the index relation to get the 'tid' for
* a tuple in the relation 'relID'.
* If the current index(pointed by 'indexPtr') fails to return a
* tuple, the next index in the indices is used.
*
* bug fix so that it should retrieve on a null scan key.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
IndexNext(IndexScan * node)
{
EState *estate;
CommonScanState *scanstate;
IndexScanState *indexstate;
ScanDirection direction;
int indexPtr;
IndexScanDescPtr scanDescs;
IndexScanDesc scandesc;
Relation heapRelation;
RetrieveIndexResult result;
ItemPointer iptr;
HeapTuple tuple;
TupleTableSlot *slot;
Buffer buffer = InvalidBuffer;
/* ----------------
* extract necessary information from index scan node
* ----------------
*/
estate = node->scan.plan.state;
direction = estate->es_direction;
scanstate = node->scan.scanstate;
indexstate = node->indxstate;
indexPtr = indexstate->iss_IndexPtr;
scanDescs = indexstate->iss_ScanDescs;
scandesc = scanDescs[indexPtr];
heapRelation = scanstate->css_currentRelation;
slot = scanstate->css_ScanTupleSlot;
/* ----------------
* ok, now that we have what we need, fetch an index tuple.
* ----------------
*/
for (;;)
{
result = index_getnext(scandesc, direction);
/* ----------------
* if scanning this index succeeded then return the
* appropriate heap tuple.. else return NULL.
* ----------------
*/
if (result)
{
iptr = &result->heap_iptr;
tuple = heap_fetch(heapRelation,
NowTimeQual,
iptr,
&buffer);
/* be tidy */
pfree(result);
if (tuple == NULL)
{
/* ----------------
* we found a deleted tuple, so keep on scanning..
* ----------------
*/
if (BufferIsValid(buffer))
ReleaseBuffer(buffer);
continue;
}
/* ----------------
* store the scanned tuple in the scan tuple slot of
* the scan state. Eventually we will only do this and not
* return a tuple. Note: we pass 'false' because tuples
* returned by amgetnext are pointers onto disk pages and
* were not created with palloc() and so should not be pfree()'d.
* ----------------
*/
ExecStoreTuple(tuple, /* tuple to store */
slot,/* slot to store in */
buffer, /* buffer associated with tuple */
false); /* don't pfree */
return slot;
}
/* ----------------
* if we get here it means the index scan failed so we
* are at the end of the scan..
* ----------------
*/
return ExecClearTuple(slot);
}
}
/* ----------------------------------------------------------------
* ExecIndexScan(node)
*
* old comments:
* Scans the relation using primary or secondary indices and returns
* the next qualifying tuple in the direction specified.
* It calls ExecScan() and passes it the access methods which returns
* the next tuple using the indices.
*
* Conditions:
* -- the "cursor" maintained by the AMI is positioned at the tuple
* returned previously.
*
* Initial States:
* -- the relation indicated is opened for scanning so that the
* "cursor" is positioned before the first qualifying tuple.
* -- all index realtions are opened for scanning.
* -- indexPtr points to the first index.
* -- state variable ruleFlag = nil.
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecIndexScan(IndexScan * node)
{
TupleTableSlot *returnTuple;
/* ----------------
* use IndexNext as access method
* ----------------
*/
returnTuple = ExecScan(&node->scan, IndexNext);
return returnTuple;
}
/* ----------------------------------------------------------------
* ExecIndexReScan(node)
*
* Recalculates the value of the scan keys whose value depends on
* information known at runtime and rescans the indexed relation.
* Updating the scan key was formerly done separately in
* ExecUpdateIndexScanKeys. Integrating it into ReScan
* makes rescans of indices and
* relations/general streams more uniform.
*
* ----------------------------------------------------------------
*/
void
ExecIndexReScan(IndexScan * node, ExprContext * exprCtxt, Plan * parent)
{
EState *estate;
IndexScanState *indexstate;
ScanDirection direction;
IndexScanDescPtr scanDescs;
ScanKey *scanKeys;
IndexScanDesc sdesc;
ScanKey skey;
int numIndices;
int i;
Pointer *runtimeKeyInfo;
int indexPtr;
int *numScanKeys;
List *indxqual;
List *qual;
int n_keys;
ScanKey scan_keys;
int *run_keys;
int j;
Expr *clause;
Node *scanexpr;
Datum scanvalue;
bool isNull;
bool isDone;
indexstate = node->indxstate;
estate = node->scan.plan.state;
direction = estate->es_direction;
indexstate = node->indxstate;
numIndices = indexstate->iss_NumIndices;
scanDescs = indexstate->iss_ScanDescs;
scanKeys = indexstate->iss_ScanKeys;
runtimeKeyInfo = (Pointer *) indexstate->iss_RuntimeKeyInfo;
if (runtimeKeyInfo != NULL)
{
/*
* get the index qualifications and recalculate the appropriate
* values
*/
indexPtr = indexstate->iss_IndexPtr;
indxqual = node->indxqual;
qual = nth(indexPtr, indxqual);
numScanKeys = indexstate->iss_NumScanKeys;
n_keys = numScanKeys[indexPtr];
run_keys = (int *) runtimeKeyInfo[indexPtr];
scan_keys = (ScanKey) scanKeys[indexPtr];
for (j = 0; j < n_keys; j++)
{
/*
* If we have a run-time key, then extract the run-time
* expression and evaluate it with respect to the current
* outer tuple. We then stick the result into the scan key.
*/
if (run_keys[j] != NO_OP)
{
clause = nth(j, qual);
scanexpr = (run_keys[j] == RIGHT_OP) ?
(Node *) get_rightop(clause) : (Node *) get_leftop(clause);
/*
* pass in isDone but ignore it. We don't iterate in
* quals
*/
scanvalue = (Datum)
ExecEvalExpr(scanexpr, exprCtxt, &isNull, &isDone);
scan_keys[j].sk_argument = scanvalue;
if (isNull)
{
scan_keys[j].sk_flags |= SK_ISNULL;
}
else
{
scan_keys[j].sk_flags &= ~SK_ISNULL;
}
}
}
}
/*
* rescans all indices
*
* note: AMrescan assumes only one scan key. This may have to change if
* we ever decide to support multiple keys.
*/
for (i = 0; i < numIndices; i++)
{
sdesc = scanDescs[i];
skey = scanKeys[i];
index_rescan(sdesc, direction, skey);
}
/* ----------------
* perhaps return something meaningful
* ----------------
*/
return;
}
/* ----------------------------------------------------------------
* ExecEndIndexScan
*
* old comments
* Releases any storage allocated through C routines.
* Returns nothing.
* ----------------------------------------------------------------
*/
void
ExecEndIndexScan(IndexScan * node)
{
CommonScanState *scanstate;
IndexScanState *indexstate;
ScanKey *scanKeys;
int numIndices;
int i;
scanstate = node->scan.scanstate;
indexstate = node->indxstate;
/* ----------------
* extract information from the node
* ----------------
*/
numIndices = indexstate->iss_NumIndices;
scanKeys = indexstate->iss_ScanKeys;
/* ----------------
* Free the projection info and the scan attribute info
*
* Note: we don't ExecFreeResultType(scanstate)
* because the rule manager depends on the tupType
* returned by ExecMain(). So for now, this
* is freed at end-transaction time. -cim 6/2/91
* ----------------
*/
ExecFreeProjectionInfo(&scanstate->cstate);
/* ----------------
* close the heap and index relations
* ----------------
*/
ExecCloseR((Plan *) node);
/* ----------------
* free the scan keys used in scanning the indices
* ----------------
*/
for (i = 0; i < numIndices; i++)
{
if (scanKeys[i] != NULL)
pfree(scanKeys[i]);
}
/* ----------------
* clear out tuple table slots
* ----------------
*/
ExecClearTuple(scanstate->cstate.cs_ResultTupleSlot);
ExecClearTuple(scanstate->css_ScanTupleSlot);
/* ExecClearTuple(scanstate->css_RawTupleSlot); */
}
/* ----------------------------------------------------------------
* ExecIndexMarkPos
*
* old comments
* Marks scan position by marking the current index.
* Returns nothing.
* ----------------------------------------------------------------
*/
void
ExecIndexMarkPos(IndexScan * node)
{
IndexScanState *indexstate;
IndexScanDescPtr indexScanDescs;
IndexScanDesc scanDesc;
int indexPtr;
indexstate = node->indxstate;
indexPtr = indexstate->iss_IndexPtr;
indexScanDescs = indexstate->iss_ScanDescs;
scanDesc = indexScanDescs[indexPtr];
/* ----------------
* XXX access methods don't return marked positions so
* ----------------
*/
IndexScanMarkPosition(scanDesc);
return;
}
/* ----------------------------------------------------------------
* ExecIndexRestrPos
*
* old comments
* Restores scan position by restoring the current index.
* Returns nothing.
*
* XXX Assumes previously marked scan position belongs to current index
* ----------------------------------------------------------------
*/
void
ExecIndexRestrPos(IndexScan * node)
{
IndexScanState *indexstate;
IndexScanDescPtr indexScanDescs;
IndexScanDesc scanDesc;
int indexPtr;
indexstate = node->indxstate;
indexPtr = indexstate->iss_IndexPtr;
indexScanDescs = indexstate->iss_ScanDescs;
scanDesc = indexScanDescs[indexPtr];
IndexScanRestorePosition(scanDesc);
}
/* ----------------------------------------------------------------
* ExecInitIndexScan
*
* Initializes the index scan's state information, creates
* scan keys, and opens the base and index relations.
*
* Note: index scans have 2 sets of state information because
* we have to keep track of the base relation and the
* index relations.
*
* old comments
* Creates the run-time state information for the node and
* sets the relation id to contain relevant decriptors.
*
* Parameters:
* node: IndexNode node produced by the planner.
* estate: the execution state initialized in InitPlan.
* ----------------------------------------------------------------
*/
bool
ExecInitIndexScan(IndexScan * node, EState * estate, Plan * parent)
{
IndexScanState *indexstate;
CommonScanState *scanstate;
List *indxqual;
List *indxid;
int i;
int numIndices;
int indexPtr;
ScanKey *scanKeys;
int *numScanKeys;
RelationPtr relationDescs;
IndexScanDescPtr scanDescs;
Pointer *runtimeKeyInfo;
bool have_runtime_keys;
List *rangeTable;
RangeTblEntry *rtentry;
Index relid;
Oid reloid;
TimeQual timeQual;
Relation currentRelation;
HeapScanDesc currentScanDesc;
ScanDirection direction;
int baseid;
/* ----------------
* assign execution state to node
* ----------------
*/
node->scan.plan.state = estate;
/* --------------------------------
* Part 1) initialize scan state
*
* create new CommonScanState for node
* --------------------------------
*/
scanstate = makeNode(CommonScanState);
/*
scanstate->ss_ProcOuterFlag = false;
scanstate->ss_OldRelId = 0;
*/
node->scan.scanstate = scanstate;
/* ----------------
* assign node's base_id .. we don't use AssignNodeBaseid() because
* the increment is done later on after we assign the index scan's
* scanstate. see below.
* ----------------
*/
baseid = estate->es_BaseId;
/* scanstate->csstate.cstate.bnode.base_id = baseid; */
scanstate->cstate.cs_base_id = baseid;
/* ----------------
* create expression context for node
* ----------------
*/
ExecAssignExprContext(estate, &scanstate->cstate);
#define INDEXSCAN_NSLOTS 3
/* ----------------
* tuple table initialization
* ----------------
*/
ExecInitResultTupleSlot(estate, &scanstate->cstate);
ExecInitScanTupleSlot(estate, scanstate);
/* ExecInitRawTupleSlot(estate, scanstate); */
/* ----------------
* initialize projection info. result type comes from scan desc
* below..
* ----------------
*/
ExecAssignProjectionInfo((Plan *) node, &scanstate->cstate);
/* --------------------------------
* Part 2) initialize index scan state
*
* create new IndexScanState for node
* --------------------------------
*/
indexstate = makeNode(IndexScanState);
indexstate->iss_NumIndices = 0;
indexstate->iss_IndexPtr = 0;
indexstate->iss_ScanKeys = NULL;
indexstate->iss_NumScanKeys = NULL;
indexstate->iss_RuntimeKeyInfo = NULL;
indexstate->iss_RelationDescs = NULL;
indexstate->iss_ScanDescs = NULL;
node->indxstate = indexstate;
/* ----------------
* assign base id to index scan state also
* ----------------
*/
indexstate->cstate.cs_base_id = baseid;
baseid++;
estate->es_BaseId = baseid;
/* ----------------
* get the index node information
* ----------------
*/
indxid = node->indxid;
indxqual = node->indxqual;
numIndices = length(indxid);
indexPtr = 0;
CXT1_printf("ExecInitIndexScan: context is %d\n", CurrentMemoryContext);
/* ----------------
* scanKeys is used to keep track of the ScanKey's. This is needed
* because a single scan may use several indices and each index has
* its own ScanKey.
* ----------------
*/
numScanKeys = (int *) palloc(numIndices * sizeof(int));
scanKeys = (ScanKey *) palloc(numIndices * sizeof(ScanKey));
relationDescs = (RelationPtr) palloc(numIndices * sizeof(Relation));
scanDescs = (IndexScanDescPtr) palloc(numIndices * sizeof(IndexScanDesc));
/* ----------------
* initialize runtime key info.
* ----------------
*/
have_runtime_keys = false;
runtimeKeyInfo = (Pointer *)
palloc(numIndices * sizeof(Pointer));
/* ----------------
* build the index scan keys from the index qualification
* ----------------
*/
for (i = 0; i < numIndices; i++)
{
int j;
List *qual;
int n_keys;
ScanKey scan_keys;
int *run_keys;
qual = nth(i, indxqual);
n_keys = length(qual);
scan_keys = (n_keys <= 0) ? NULL :
(ScanKey) palloc(n_keys * sizeof(ScanKeyData));
run_keys = (n_keys <= 0) ? NULL :
(int *) palloc(n_keys * sizeof(int));
CXT1_printf("ExecInitIndexScan: context is %d\n",
CurrentMemoryContext);
/* ----------------
* for each opclause in the given qual,
* convert each qual's opclause into a single scan key
* ----------------
*/
for (j = 0; j < n_keys; j++)
{
Expr *clause; /* one part of index qual */
Oper *op; /* operator used in scan.. */
Node *leftop; /* expr on lhs of operator */
Node *rightop;/* expr on rhs ... */
bits16 flags = 0;
int scanvar;/* which var identifies varattno */
AttrNumber varattno = 0; /* att number used in scan */
Oid opid; /* operator id used in scan */
Datum scanvalue = 0; /* value used in scan (if const) */
/* ----------------
* extract clause information from the qualification
* ----------------
*/
clause = nth(j, qual);
op = (Oper *) clause->oper;
if (!IsA(op, Oper))
elog(WARN, "ExecInitIndexScan: op not an Oper!");
opid = op->opid;
/* ----------------
* Here we figure out the contents of the index qual.
* The usual case is (op var const) or (op const var)
* which means we form a scan key for the attribute
* listed in the var node and use the value of the const.
*
* If we don't have a const node, then it means that
* one of the var nodes refers to the "scan" tuple and
* is used to determine which attribute to scan, and the
* other expression is used to calculate the value used in
* scanning the index.
*
* This means our index scan's scan key is a function of
* information obtained during the execution of the plan
* in which case we need to recalculate the index scan key
* at run time.
*
* Hence, we set have_runtime_keys to true and then set
* the appropriate flag in run_keys to LEFT_OP or RIGHT_OP.
* The corresponding scan keys are recomputed at run time.
* ----------------
*/
scanvar = NO_OP;
/* ----------------
* determine information in leftop
* ----------------
*/
leftop = (Node *) get_leftop(clause);
if (IsA(leftop, Var) && var_is_rel((Var *) leftop))
{
/* ----------------
* if the leftop is a "rel-var", then it means
* that it is a var node which tells us which
* attribute to use for our scan key.
* ----------------
*/
varattno = ((Var *) leftop)->varattno;
scanvar = LEFT_OP;
}
else if (IsA(leftop, Const))
{
/* ----------------
* if the leftop is a const node then it means
* it identifies the value to place in our scan key.
* ----------------
*/
run_keys[j] = NO_OP;
scanvalue = ((Const *) leftop)->constvalue;
#ifdef INDEXSCAN_PATCH
}
else if (IsA(leftop, Param))
{
bool isnull;
/* ----------------
* if the leftop is a Param node then it means
* it identifies the value to place in our scan key.
* ----------------
*/
run_keys[j] = NO_OP;
scanvalue = ExecEvalParam((Param *) leftop,
scanstate->cstate.cs_ExprContext,
&isnull);
if (isnull)
flags |= SK_ISNULL;
#endif
}
else if (leftop != NULL &&
is_funcclause(leftop) &&
var_is_rel(lfirst(((Expr *) leftop)->args)))
{
/* ----------------
* if the leftop is a func node then it means
* it identifies the value to place in our scan key.
* Since functional indices have only one attribute
* the attno must always be set to 1.
* ----------------
*/
varattno = 1;
scanvar = LEFT_OP;
}
else
{
/* ----------------
* otherwise, the leftop contains information usable
* at runtime to figure out the value to place in our
* scan key.
* ----------------
*/
have_runtime_keys = true;
run_keys[j] = LEFT_OP;
scanvalue = Int32GetDatum((int32) true);
}
/* ----------------
* now determine information in rightop
* ----------------
*/
rightop = (Node *) get_rightop(clause);
if (IsA(rightop, Var) && var_is_rel((Var *) rightop))
{
/* ----------------
* here we make sure only one op identifies the
* scan-attribute...
* ----------------
*/
if (scanvar == LEFT_OP)
elog(WARN, "ExecInitIndexScan: %s",
"both left and right op's are rel-vars");
/* ----------------
* if the rightop is a "rel-var", then it means
* that it is a var node which tells us which
* attribute to use for our scan key.
* ----------------
*/
varattno = ((Var *) rightop)->varattno;
scanvar = RIGHT_OP;
}
else if (IsA(rightop, Const))
{
/* ----------------
* if the leftop is a const node then it means
* it identifies the value to place in our scan key.
* ----------------
*/
run_keys[j] = NO_OP;
scanvalue = ((Const *) rightop)->constvalue;
#ifdef INDEXSCAN_PATCH
}
else if (IsA(rightop, Param))
{
bool isnull;
/* ----------------
* if the rightop is a Param node then it means
* it identifies the value to place in our scan key.
* ----------------
*/
run_keys[j] = NO_OP;
scanvalue = ExecEvalParam((Param *) rightop,
scanstate->cstate.cs_ExprContext,
&isnull);
if (isnull)
flags |= SK_ISNULL;
#endif
}
else if (rightop != NULL &&
is_funcclause(rightop) &&
var_is_rel(lfirst(((Expr *) rightop)->args)))
{
/* ----------------
* if the rightop is a func node then it means
* it identifies the value to place in our scan key.
* Since functional indices have only one attribute
* the attno must always be set to 1.
* ----------------
*/
if (scanvar == LEFT_OP)
elog(WARN, "ExecInitIndexScan: %s",
"both left and right ops are rel-vars");
varattno = 1;
scanvar = RIGHT_OP;
}
else
{
/* ----------------
* otherwise, the leftop contains information usable
* at runtime to figure out the value to place in our
* scan key.
* ----------------
*/
have_runtime_keys = true;
run_keys[j] = RIGHT_OP;
scanvalue = Int32GetDatum((int32) true);
}
/* ----------------
* now check that at least one op tells us the scan
* attribute...
* ----------------
*/
if (scanvar == NO_OP)
elog(WARN, "ExecInitIndexScan: %s",
"neither leftop nor rightop refer to scan relation");
/* ----------------
* initialize the scan key's fields appropriately
* ----------------
*/
ScanKeyEntryInitialize(&scan_keys[j],
flags,
varattno, /* attribute number to
* scan */
(RegProcedure) opid, /* reg proc to use */
(Datum) scanvalue); /* constant */
}
/* ----------------
* store the key information into our array.
* ----------------
*/
numScanKeys[i] = n_keys;
scanKeys[i] = scan_keys;
runtimeKeyInfo[i] = (Pointer) run_keys;
}
indexstate->iss_NumIndices = numIndices;
indexstate->iss_IndexPtr = indexPtr;
indexstate->iss_ScanKeys = scanKeys;
indexstate->iss_NumScanKeys = numScanKeys;
/* ----------------
* If all of our keys have the form (op var const) , then we have no
* runtime keys so we store NULL in the runtime key info.
* Otherwise runtime key info contains an array of pointers
* (one for each index) to arrays of flags (one for each key)
* which indicate that the qual needs to be evaluated at runtime.
* -cim 10/24/89
* ----------------
*/
if (have_runtime_keys)
{
indexstate->iss_RuntimeKeyInfo = (Pointer) runtimeKeyInfo;
}
else
{
indexstate->iss_RuntimeKeyInfo = NULL;
for (i = 0; i < numIndices; i++)
{
List *qual;
int n_keys;
qual = nth(i, indxqual);
n_keys = length(qual);
if (n_keys > 0)
pfree(runtimeKeyInfo[i]);
}
pfree(runtimeKeyInfo);
}
/* ----------------
* get the range table and direction information
* from the execution state (these are needed to
* open the relations).
* ----------------
*/
rangeTable = estate->es_range_table;
direction = estate->es_direction;
/* ----------------
* open the base relation
* ----------------
*/
relid = node->scan.scanrelid;
rtentry = rt_fetch(relid, rangeTable);
reloid = rtentry->relid;
timeQual = rtentry->timeQual;
ExecOpenScanR(reloid, /* relation */
0, /* nkeys */
(ScanKey) NULL, /* scan key */
0, /* is index */
direction, /* scan direction */
timeQual, /* time qual */
¤tRelation, /* return: rel desc */
(Pointer *) & currentScanDesc); /* return: scan desc */
scanstate->css_currentRelation = currentRelation;
scanstate->css_currentScanDesc = currentScanDesc;
/* ----------------
* get the scan type from the relation descriptor.
* ----------------
*/
ExecAssignScanType(scanstate, RelationGetTupleDescriptor(currentRelation));
ExecAssignResultTypeFromTL((Plan *) node, &scanstate->cstate);
/* ----------------
* index scans don't have subtrees..
* ----------------
*/
/* scanstate->ss_ProcOuterFlag = false; */
/* ----------------
* open the index relations and initialize
* relation and scan descriptors.
* ----------------
*/
for (i = 0; i < numIndices; i++)
{
Oid indexOid;
indexOid = (Oid) nthi(i, indxid);
if (indexOid != 0)
{
ExecOpenScanR(indexOid, /* relation */
numScanKeys[i], /* nkeys */
scanKeys[i], /* scan key */
true, /* is index */
direction, /* scan direction */
timeQual, /* time qual */
&(relationDescs[i]), /* return: rel desc */
(Pointer *) & (scanDescs[i]));
/* return: scan desc */
}
}
indexstate->iss_RelationDescs = relationDescs;
indexstate->iss_ScanDescs = scanDescs;
indexstate->cstate.cs_TupFromTlist = false;
/* ----------------
* all done.
* ----------------
*/
return TRUE;
}
int
ExecCountSlotsIndexScan(IndexScan * node)
{
return ExecCountSlotsNode(outerPlan((Plan *) node)) +
ExecCountSlotsNode(innerPlan((Plan *) node)) +
INDEXSCAN_NSLOTS;
}