Newer
Older
/*-------------------------------------------------------------------------
*
* int.c
* Functions for the built-in integer types (except int8).
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/int.c,v 1.65 2005/02/27 08:31:30 neilc Exp $
*
*-------------------------------------------------------------------------
*/
/*
* OLD COMMENTS
* int2in, int2out, int2recv, int2send
* int4in, int4out, int4recv, int4send
* int2vectorin, int2vectorout, int2vectorrecv, int2vectorsend
* Conversion routines:
* itoi, int2_text, int4_text
* Boolean operators:
* inteq, intne, intlt, intle, intgt, intge
* Arithmetic operators:
* intpl, intmi, int4mul, intdiv
* Arithmetic operators:
* intmod
#include <ctype.h>
#include <limits.h>
#include "funcapi.h"
#include "libpq/pqformat.h"
#ifndef SHRT_MAX
#define SHRT_MAX (0x7FFF)
#endif
#ifndef SHRT_MIN
#define SHRT_MIN (-0x8000)
#endif
#define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
typedef struct
{
int32 current;
int32 finish;
int32 step;
/*****************************************************************************
* USER I/O ROUTINES *
*****************************************************************************/
/*
* int2in - converts "num" to short
Datum
int2in(PG_FUNCTION_ARGS)
char *num = PG_GETARG_CSTRING(0);
PG_RETURN_INT16(pg_atoi(num, sizeof(int16), '\0'));
* int2out - converts short to "num"
Datum
int2out(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
char *result = (char *) palloc(7); /* sign, 5 digits, '\0' */
pg_itoa(arg1, result);
PG_RETURN_CSTRING(result);
/*
* int2recv - converts external binary format to int2
*/
Datum
int2recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
PG_RETURN_INT16((int16) pq_getmsgint(buf, sizeof(int16)));
}
/*
* int2send - converts int2 to binary format
*/
Datum
int2send(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint(&buf, arg1, sizeof(int16));
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Bruce Momjian
committed
* int2vectorin - converts "num num ..." to internal form
* Note: Fills any missing slots with zeroes.
Datum
int2vectorin(PG_FUNCTION_ARGS)
char *intString = PG_GETARG_CSTRING(0);
int16 *result = (int16 *) palloc(sizeof(int16[INDEX_MAX_KEYS]));
for (slot = 0; *intString && slot < INDEX_MAX_KEYS; slot++)
if (sscanf(intString, "%hd", &result[slot]) != 1)
break;
while (*intString && isspace((unsigned char) *intString))
intString++;
while (*intString && !isspace((unsigned char) *intString))
while (*intString && isspace((unsigned char) *intString))
intString++;
if (*intString)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("int2vector has too many elements")));
while (slot < INDEX_MAX_KEYS)
result[slot++] = 0;
PG_RETURN_POINTER(result);
Bruce Momjian
committed
* int2vectorout - converts internal form to "num num ..."
Datum
int2vectorout(PG_FUNCTION_ARGS)
int16 *int2Array = (int16 *) PG_GETARG_POINTER(0);
char *rp;
Bruce Momjian
committed
char *result;
/* find last non-zero value in vector */
for (maxnum = INDEX_MAX_KEYS - 1; maxnum >= 0; maxnum--)
if (int2Array[maxnum] != 0)
break;
/* assumes sign, 5 digits, ' ' */
rp = result = (char *) palloc((maxnum + 1) * 7 + 1);
for (num = 0; num <= maxnum; num++)
if (num != 0)
*rp++ = ' ';
pg_itoa(int2Array[num], rp);
while (*++rp != '\0')
;
}
*rp = '\0';
PG_RETURN_CSTRING(result);
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*
* int2vectorrecv - converts external binary format to int2vector
*/
Datum
int2vectorrecv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
int16 *result = (int16 *) palloc(sizeof(int16[INDEX_MAX_KEYS]));
int slot;
for (slot = 0; slot < INDEX_MAX_KEYS; slot++)
result[slot] = (int16) pq_getmsgint(buf, sizeof(int16));
PG_RETURN_POINTER(result);
}
/*
* int2vectorsend - converts int2vector to binary format
*/
Datum
int2vectorsend(PG_FUNCTION_ARGS)
{
int16 *int2Array = (int16 *) PG_GETARG_POINTER(0);
StringInfoData buf;
int slot;
pq_begintypsend(&buf);
for (slot = 0; slot < INDEX_MAX_KEYS; slot++)
pq_sendint(&buf, int2Array[slot], sizeof(int16));
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*
* We don't have a complete set of int2vector support routines,
* but we need int2vectoreq for catcache indexing.
*/
Datum
int2vectoreq(PG_FUNCTION_ARGS)
int16 *arg1 = (int16 *) PG_GETARG_POINTER(0);
int16 *arg2 = (int16 *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(memcmp(arg1, arg2, INDEX_MAX_KEYS * sizeof(int16)) == 0);
/*****************************************************************************
* PUBLIC ROUTINES *
*****************************************************************************/
/*
* int4in - converts "num" to int4
Datum
int4in(PG_FUNCTION_ARGS)
char *num = PG_GETARG_CSTRING(0);
PG_RETURN_INT32(pg_atoi(num, sizeof(int32), '\0'));
* int4out - converts int4 to "num"
Datum
int4out(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
char *result = (char *) palloc(12); /* sign, 10 digits, '\0' */
pg_ltoa(arg1, result);
PG_RETURN_CSTRING(result);
/*
* int4recv - converts external binary format to int4
*/
Datum
int4recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
PG_RETURN_INT32((int32) pq_getmsgint(buf, sizeof(int32)));
}
/*
* int4send - converts int4 to binary format
*/
Datum
int4send(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint(&buf, arg1, sizeof(int32));
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
* ===================
* CONVERSION ROUTINES
* ===================
Datum
i2toi4(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
PG_RETURN_INT32((int32) arg1);
Datum
i4toi2(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
if (arg1 < SHRT_MIN || arg1 > SHRT_MAX)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16((int16) arg1);
Datum
int2_text(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
text *result = (text *) palloc(7 + VARHDRSZ); /* sign,5 digits, '\0' */
pg_itoa(arg1, VARDATA(result));
PG_RETURN_TEXT_P(result);
}
Datum
text_int2(PG_FUNCTION_ARGS)
text *string = PG_GETARG_TEXT_P(0);
Datum result;
int len;
char *str;
len = VARSIZE(string) - VARHDRSZ;
str = palloc(len + 1);
memcpy(str, VARDATA(string), len);
*(str + len) = '\0';
result = DirectFunctionCall1(int2in, CStringGetDatum(str));
Bruce Momjian
committed
pfree(str);
Datum
int4_text(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
text *result = (text *) palloc(12 + VARHDRSZ); /* sign,10 digits,'\0' */
pg_ltoa(arg1, VARDATA(result));
PG_RETURN_TEXT_P(result);
}
Datum
text_int4(PG_FUNCTION_ARGS)
text *string = PG_GETARG_TEXT_P(0);
Datum result;
int len;
char *str;
len = VARSIZE(string) - VARHDRSZ;
str = palloc(len + 1);
memcpy(str, VARDATA(string), len);
*(str + len) = '\0';
result = DirectFunctionCall1(int4in, CStringGetDatum(str));
Bruce Momjian
committed
pfree(str);
/* Cast int4 -> bool */
Datum
int4_bool(PG_FUNCTION_ARGS)
{
if (PG_GETARG_INT32(0) == 0)
PG_RETURN_BOOL(false);
else
PG_RETURN_BOOL(true);
}
/* Cast bool -> int4 */
Datum
bool_int4(PG_FUNCTION_ARGS)
{
if (PG_GETARG_BOOL(0) == false)
PG_RETURN_INT32(0);
else
PG_RETURN_INT32(1);
}
* ============================
* COMPARISON OPERATOR ROUTINES
* ============================
* inteq - returns 1 iff arg1 == arg2
* intne - returns 1 iff arg1 != arg2
* intlt - returns 1 iff arg1 < arg2
* intle - returns 1 iff arg1 <= arg2
* intgt - returns 1 iff arg1 > arg2
* intge - returns 1 iff arg1 >= arg2
Datum
int4eq(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 == arg2);
Datum
int4ne(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 != arg2);
Datum
int4lt(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 < arg2);
Datum
int4le(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 <= arg2);
Datum
int4gt(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 > arg2);
Datum
int4ge(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 >= arg2);
Datum
int2eq(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 == arg2);
Datum
int2ne(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 != arg2);
Datum
int2lt(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 < arg2);
Datum
int2le(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 <= arg2);
Datum
int2gt(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 > arg2);
Datum
int2ge(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 >= arg2);
Datum
int24eq(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 == arg2);
Datum
int24ne(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 != arg2);
Datum
int24lt(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 < arg2);
Datum
int24le(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 <= arg2);
Datum
int24gt(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 > arg2);
Datum
int24ge(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 >= arg2);
Datum
int42eq(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 == arg2);
Datum
int42ne(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 != arg2);
Datum
int42lt(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 < arg2);
Datum
int42le(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 <= arg2);
Datum
int42gt(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 > arg2);
Datum
int42ge(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 >= arg2);
* int[24]pl - returns arg1 + arg2
* int[24]mi - returns arg1 - arg2
* int[24]mul - returns arg1 * arg2
* int[24]div - returns arg1 / arg2
Datum
int4um(PG_FUNCTION_ARGS)
int32 arg = PG_GETARG_INT32(0);
int32 result;
result = -arg;
/* overflow check (needed for INT_MIN) */
if (arg != 0 && SAMESIGN(result, arg))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int4up(PG_FUNCTION_ARGS)
{
int32 arg = PG_GETARG_INT32(0);
PG_RETURN_INT32(arg);
}
Datum
int4pl(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum
* had better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int4mi(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then
* the result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int4mul(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg2 gives
* arg1 again. There are two cases where this fails: arg2 = 0 (which
* cannot overflow) and arg1 = INT_MIN, arg2 = -1 (where the division
* itself will overflow and thus incorrectly match).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best
* bang for the buck seems to be to check whether both inputs are in
* the int16 range; if so, no overflow is possible.
*/
if (!(arg1 >= (int32) SHRT_MIN && arg1 <= (int32) SHRT_MAX &&
arg2 >= (int32) SHRT_MIN && arg2 <= (int32) SHRT_MAX) &&
arg2 != 0 &&
(result/arg2 != arg1 || (arg2 == -1 && arg1 < 0 && result < 0)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int4div(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
if (arg2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
result = arg1 / arg2;
/*
* Overflow check. The only possible overflow case is for
* arg1 = INT_MIN, arg2 = -1, where the correct result is -INT_MIN,
* which can't be represented on a two's-complement machine.
*/
if (arg2 == -1 && arg1 < 0 && result < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int4inc(PG_FUNCTION_ARGS)
int32 arg = PG_GETARG_INT32(0);
int32 result;
result = arg + 1;
/* Overflow check */
if (arg > 0 && result < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int2um(PG_FUNCTION_ARGS)
int16 arg = PG_GETARG_INT16(0);
int16 result;
result = -arg;
/* overflow check (needed for SHRT_MIN) */
if (arg != 0 && SAMESIGN(result, arg))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(result);
Datum
int2up(PG_FUNCTION_ARGS)
{
int16 arg = PG_GETARG_INT16(0);
PG_RETURN_INT16(arg);
}
Datum
int2pl(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
int16 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum
* had better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(result);
Datum
int2mi(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
int16 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then
* the result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(result);
Datum
int2mul(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
int32 result32;
/*
* The most practical way to detect overflow is to do the arithmetic
* in int32 (so that the result can't overflow) and then do a range
* check.
*/
result32 = (int32) arg1 * (int32) arg2;
if (result32 < SHRT_MIN || result32 > SHRT_MAX)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16((int16) result32);
Datum
int2div(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
int16 result;
if (arg2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
result = arg1 / arg2;
/*
* Overflow check. The only possible overflow case is for
* arg1 = SHRT_MIN, arg2 = -1, where the correct result is -SHRT_MIN,
* which can't be represented on a two's-complement machine.
*/
if (arg2 == -1 && arg1 < 0 && result < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(result);
Datum
int24pl(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum
* had better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int24mi(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then
* the result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int24mul(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg2 gives
* arg1 again. There is one case where this fails: arg2 = 0 (which
* cannot overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best
* bang for the buck seems to be to check whether both inputs are in
* the int16 range; if so, no overflow is possible.
*/
if (!(arg2 >= (int32) SHRT_MIN && arg2 <= (int32) SHRT_MAX) &&
result/arg2 != arg1)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int24div(PG_FUNCTION_ARGS)
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
if (arg2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* No overflow is possible */
PG_RETURN_INT32((int32) arg1 / arg2);
Datum
int42pl(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
int32 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum
* had better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int42mi(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
int32 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then
* the result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
Datum
int42mul(PG_FUNCTION_ARGS)
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
int32 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg1 gives
* arg2 again. There is one case where this fails: arg1 = 0 (which
* cannot overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best
* bang for the buck seems to be to check whether both inputs are in
* the int16 range; if so, no overflow is possible.