diff --git a/src/backend/optimizer/prep/prepqual.c b/src/backend/optimizer/prep/prepqual.c index 974884d8bcc6ca04290bf7432e78fcd624743836..72e26f35074e1e749d625173305e9a1473367f97 100644 --- a/src/backend/optimizer/prep/prepqual.c +++ b/src/backend/optimizer/prep/prepqual.c @@ -1,13 +1,13 @@ /*------------------------------------------------------------------------- * * prepqual.c - * Routines for preprocessing the parse tree qualification + * Routines for preprocessing qualification expressions * * Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION - * $Header: /cvsroot/pgsql/src/backend/optimizer/prep/prepqual.c,v 1.18 1999/09/07 03:47:06 tgl Exp $ + * $Header: /cvsroot/pgsql/src/backend/optimizer/prep/prepqual.c,v 1.19 1999/09/12 18:08:17 tgl Exp $ * *------------------------------------------------------------------------- */ @@ -20,28 +20,33 @@ #include "optimizer/prep.h" #include "utils/lsyscache.h" -static Expr *flatten_andors(Expr *qual, bool deep); +static Expr *flatten_andors(Expr *qual); static List *pull_ors(List *orlist); static List *pull_ands(List *andlist); static Expr *find_nots(Expr *qual); static Expr *push_nots(Expr *qual); -static Expr *normalize(Expr *qual); -static List *or_normalize(List *orlist); -static List *distribute_args(List *item, List *args); -static List *qual_cleanup(Expr *qual); -static List *remove_duplicates(List *list); +static Expr *find_ors(Expr *qual); +static Expr *or_normalize(List *orlist); +static Expr *find_ands(Expr *qual); +static Expr *and_normalize(List *andlist); /***************************************************************************** * - * CNF CONVERSION ROUTINES + * CNF/DNF CONVERSION ROUTINES * - * NOTES: - * The basic algorithms for normalizing the qualification are taken - * from ingres/source/qrymod/norml.c + * These routines convert an arbitrary boolean expression into + * conjunctive normal form or disjunctive normal form. * - * Remember that the initial qualification may consist of ARBITRARY - * combinations of clauses. In addition, before this routine is called, - * the qualification will contain explicit "AND"s. + * The result of these routines differs from a "true" CNF/DNF in that + * we do not bother to detect common subexpressions; e.g., ("AND" A A) + * does not get simplified to A. Testing for identical subexpressions + * is a waste of time if the query is written intelligently, and it + * takes an unreasonable amount of time if there are many subexpressions + * (since it's roughly O(N^2) in the number of subexpressions). + * + * Because of that restriction, it would be unwise to apply dnfify() + * to the result of cnfify() or vice versa. Instead apply both to + * the original user-written qual expression. * *****************************************************************************/ @@ -54,44 +59,225 @@ static List *remove_duplicates(List *list); * Returns the modified qualification. * * If 'removeAndFlag' is true then it removes explicit AND at the top level, - * producing a list of implicitly-ANDed conditions. Otherwise, a normal - * boolean expression is returned. - * - * NOTE: this routine is called by the planner (removeAndFlag = true) - * and from the rule manager (removeAndFlag = false). - * + * producing a list of implicitly-ANDed conditions. Otherwise, a regular + * boolean expression is returned. Since most callers pass 'true', we + * prefer to declare the result as List *, not Expr *. */ List * cnfify(Expr *qual, bool removeAndFlag) { - Expr *newqual = NULL; + Expr *newqual; - if (qual != NULL) + if (qual == NULL) + return NIL; + + /* Flatten AND and OR groups throughout the tree. + * This improvement is always worthwhile. + */ + newqual = flatten_andors(qual); + /* Push down NOTs. We do this only in the top-level boolean + * expression, without examining arguments of operators/functions. + */ + newqual = find_nots(newqual); + /* Normalize into conjunctive normal form. */ + newqual = find_ors(newqual); + + if (removeAndFlag) { - /* Flatten AND and OR groups throughout the tree. - * This improvement is always worthwhile. - */ - newqual = flatten_andors(qual, true); - /* Push down NOTs. We do this only in the top-level boolean - * expression, without examining arguments of operators/functions. - */ - newqual = find_nots(newqual); - /* Pushing NOTs could have brought AND/ORs together, so do - * another flatten_andors (only in the top level); then normalize. - */ - newqual = normalize(flatten_andors(newqual, false)); - /* Do we need a flatten here? Anyway, clean up after normalize. */ - newqual = (Expr *) qual_cleanup(flatten_andors(newqual, false)); - /* This flatten is almost surely a waste of time... */ - newqual = flatten_andors(newqual, false); + newqual = (Expr *) make_ands_implicit(newqual); + } + + return (List *) newqual; +} + +/* + * dnfify + * Convert a qualification to disjunctive normal form by applying + * successive normalizations. + * + * Returns the modified qualification. + * + * We do not offer a 'removeOrFlag' in this case; the usages are + * different. + */ +Expr * +dnfify(Expr *qual) +{ + Expr *newqual; + + if (qual == NULL) + return NULL; + + /* Flatten AND and OR groups throughout the tree. + * This improvement is always worthwhile. + */ + newqual = flatten_andors(qual); + /* Push down NOTs. We do this only in the top-level boolean + * expression, without examining arguments of operators/functions. + */ + newqual = find_nots(newqual); + /* Normalize into disjunctive normal form. */ + newqual = find_ands(newqual); - if (removeAndFlag) + return newqual; +} + +/*-------------------- + * The parser regards AND and OR as purely binary operators, so a qual like + * (A = 1) OR (A = 2) OR (A = 3) ... + * will produce a nested parsetree + * (OR (A = 1) (OR (A = 2) (OR (A = 3) ...))) + * In reality, the optimizer and executor regard AND and OR as n-argument + * operators, so this tree can be flattened to + * (OR (A = 1) (A = 2) (A = 3) ...) + * which is the responsibility of the routines below. + * + * flatten_andors() does the basic transformation with no initial assumptions. + * pull_ands() and pull_ors() are used to maintain flatness of the AND/OR + * tree after local transformations that might introduce nested AND/ORs. + *-------------------- + */ + +/*-------------------- + * flatten_andors + * Given a qualification, simplify nested AND/OR clauses into flat + * AND/OR clauses with more arguments. + * + * Returns the rebuilt expr (note original list structure is not touched). + *-------------------- + */ +static Expr * +flatten_andors(Expr *qual) +{ + if (qual == NULL) + return NULL; + + if (and_clause((Node *) qual)) + { + List *out_list = NIL; + List *arg; + + foreach(arg, qual->args) { - newqual = (Expr *) make_ands_implicit(newqual); + Expr *subexpr = flatten_andors((Expr *) lfirst(arg)); + + /* + * Note: we can destructively nconc the subexpression's arglist + * because we know the recursive invocation of flatten_andors + * will have built a new arglist not shared with any other expr. + * Otherwise we'd need a listCopy here. + */ + if (and_clause((Node *) subexpr)) + out_list = nconc(out_list, subexpr->args); + else + out_list = lappend(out_list, subexpr); } + return make_andclause(out_list); + } + else if (or_clause((Node *) qual)) + { + List *out_list = NIL; + List *arg; + + foreach(arg, qual->args) + { + Expr *subexpr = flatten_andors((Expr *) lfirst(arg)); + + /* + * Note: we can destructively nconc the subexpression's arglist + * because we know the recursive invocation of flatten_andors + * will have built a new arglist not shared with any other expr. + * Otherwise we'd need a listCopy here. + */ + if (or_clause((Node *) subexpr)) + out_list = nconc(out_list, subexpr->args); + else + out_list = lappend(out_list, subexpr); + } + return make_orclause(out_list); + } + else if (not_clause((Node *) qual)) + return make_notclause(flatten_andors(get_notclausearg(qual))); + else if (is_opclause((Node *) qual)) + { + Expr *left = (Expr *) get_leftop(qual); + Expr *right = (Expr *) get_rightop(qual); + + if (right) + return make_clause(qual->opType, qual->oper, + lcons(flatten_andors(left), + lcons(flatten_andors(right), + NIL))); + else + return make_clause(qual->opType, qual->oper, + lcons(flatten_andors(left), + NIL)); } + else + return qual; +} + +/* + * pull_ors + * Pull the arguments of an 'or' clause nested within another 'or' + * clause up into the argument list of the parent. + * + * Input is the arglist of an OR clause. + * Returns the rebuilt arglist (note original list structure is not touched). + */ +static List * +pull_ors(List *orlist) +{ + List *out_list = NIL; + List *arg; - return (List *) (newqual); + foreach(arg, orlist) + { + Expr *subexpr = (Expr *) lfirst(arg); + + /* + * Note: we can destructively nconc the subexpression's arglist + * because we know the recursive invocation of pull_ors + * will have built a new arglist not shared with any other expr. + * Otherwise we'd need a listCopy here. + */ + if (or_clause((Node *) subexpr)) + out_list = nconc(out_list, pull_ors(subexpr->args)); + else + out_list = lappend(out_list, subexpr); + } + return out_list; +} + +/* + * pull_ands + * Pull the arguments of an 'and' clause nested within another 'and' + * clause up into the argument list of the parent. + * + * Returns the modified list. + */ +static List * +pull_ands(List *andlist) +{ + List *out_list = NIL; + List *arg; + + foreach(arg, andlist) + { + Expr *subexpr = (Expr *) lfirst(arg); + + /* + * Note: we can destructively nconc the subexpression's arglist + * because we know the recursive invocation of pull_ands + * will have built a new arglist not shared with any other expr. + * Otherwise we'd need a listCopy here. + */ + if (and_clause((Node *) subexpr)) + out_list = nconc(out_list, pull_ands(subexpr->args)); + else + out_list = lappend(out_list, subexpr); + } + return out_list; } /* @@ -100,8 +286,7 @@ cnfify(Expr *qual, bool removeAndFlag) * For 'NOT' clauses, apply push_not() to try to push down the 'NOT'. * For all other clause types, simply recurse. * - * Returns the modified qualification. - * + * Returns the modified qualification. AND/OR flatness is preserved. */ static Expr * find_nots(Expr *qual) @@ -134,7 +319,7 @@ find_nots(Expr *qual) foreach(temp, qual->args) t_list = lappend(t_list, find_nots(lfirst(temp))); - return make_andclause(t_list); + return make_andclause(pull_ands(t_list)); } else if (or_clause((Node *) qual)) { @@ -143,7 +328,7 @@ find_nots(Expr *qual) foreach(temp, qual->args) t_list = lappend(t_list, find_nots(lfirst(temp))); - return make_orclause(t_list); + return make_orclause(pull_ors(t_list)); } else if (not_clause((Node *) qual)) return push_nots(get_notclausearg(qual)); @@ -187,17 +372,19 @@ push_nots(Expr *qual) } else if (and_clause((Node *) qual)) { - /* - * Apply DeMorgan's Laws: ("NOT" ("AND" A B)) => ("OR" ("NOT" A) - * ("NOT" B)) ("NOT" ("OR" A B)) => ("AND" ("NOT" A) ("NOT" B)) - * i.e., continue negating down through the clause's descendants. + /*-------------------- + * Apply DeMorgan's Laws: + * ("NOT" ("AND" A B)) => ("OR" ("NOT" A) ("NOT" B)) + * ("NOT" ("OR" A B)) => ("AND" ("NOT" A) ("NOT" B)) + * i.e., swap AND for OR and negate all the subclauses. + *-------------------- */ List *t_list = NIL; List *temp; foreach(temp, qual->args) t_list = lappend(t_list, push_nots(lfirst(temp))); - return make_orclause(t_list); + return make_orclause(pull_ors(t_list)); } else if (or_clause((Node *) qual)) { @@ -206,7 +393,7 @@ push_nots(Expr *qual) foreach(temp, qual->args) t_list = lappend(t_list, push_nots(lfirst(temp))); - return make_andclause(t_list); + return make_andclause(pull_ands(t_list)); } else if (not_clause((Node *) qual)) { @@ -228,20 +415,18 @@ push_nots(Expr *qual) } /* - * normalize + * find_ors * Given a qualification tree with the 'not's pushed down, convert it * to a tree in CNF by repeatedly applying the rule: * ("OR" A ("AND" B C)) => ("AND" ("OR" A B) ("OR" A C)) - * bottom-up. - * Note that 'or' clauses will always be turned into 'and' clauses - * if they contain any 'and' subclauses. XXX this is not always - * an improvement... * - * Returns the modified qualification. + * Note that 'or' clauses will always be turned into 'and' clauses + * if they contain any 'and' subclauses. * + * Returns the modified qualification. AND/OR flatness is preserved. */ static Expr * -normalize(Expr *qual) +find_ors(Expr *qual) { if (qual == NULL) return NULL; @@ -249,346 +434,210 @@ normalize(Expr *qual) /* We used to recurse into opclauses here, but I see no reason to... */ if (and_clause((Node *) qual)) { - List *t_list = NIL; + List *andlist = NIL; List *temp; foreach(temp, qual->args) - t_list = lappend(t_list, normalize(lfirst(temp))); - return make_andclause(t_list); + andlist = lappend(andlist, find_ors(lfirst(temp))); + return make_andclause(pull_ands(andlist)); } else if (or_clause((Node *) qual)) { - /* XXX - let form, maybe incorrect */ List *orlist = NIL; - bool has_andclause = false; List *temp; foreach(temp, qual->args) - orlist = lappend(orlist, normalize(lfirst(temp))); - foreach(temp, orlist) - { - if (and_clause(lfirst(temp))) - { - has_andclause = true; - break; - } - } - if (has_andclause) - return make_andclause(or_normalize(orlist)); - else - return make_orclause(orlist); + orlist = lappend(orlist, find_ors(lfirst(temp))); + return or_normalize(pull_ors(orlist)); } else if (not_clause((Node *) qual)) - return make_notclause(normalize(get_notclausearg(qual))); + return make_notclause(find_ors(get_notclausearg(qual))); else return qual; } /* - * qual_cleanup - * Fix up a qualification by removing duplicate entries (left over from - * normalization), and by removing 'and' and 'or' clauses which have only - * one remaining subexpr (e.g., ("AND" A) => A). + * or_normalize + * Given a list of exprs which are 'or'ed together, try to apply + * the distributive law + * ("OR" A ("AND" B C)) => ("AND" ("OR" A B) ("OR" A C)) + * to convert the top-level OR clause to a top-level AND clause. * - * Returns the modified qualification. + * Returns the resulting expression (could be an AND clause, an OR + * clause, or maybe even a single subexpression). */ -static List * -qual_cleanup(Expr *qual) +static Expr * +or_normalize(List *orlist) { - if (qual == NULL) - return NIL; + Expr *distributable = NULL; + int num_subclauses = 1; + List *andclauses = NIL; + List *temp; - if (is_opclause((Node *) qual)) - { - Expr *left = (Expr *) get_leftop(qual); - Expr *right = (Expr *) get_rightop(qual); + if (orlist == NIL) + return NULL; /* probably can't happen */ + if (lnext(orlist) == NIL) + return lfirst(orlist); /* single-expression OR (can this happen?) */ - if (right) - return (List *) make_clause(qual->opType, qual->oper, - lcons(qual_cleanup(left), - lcons(qual_cleanup(right), - NIL))); - else - return (List *) make_clause(qual->opType, qual->oper, - lcons(qual_cleanup(left), - NIL)); - } - else if (and_clause((Node *) qual)) + /* + * If we have a choice of AND clauses, pick the one with the + * most subclauses. Because we initialized num_subclauses = 1, + * any AND clauses with only one arg will be ignored as useless. + */ + foreach(temp, orlist) { - List *t_list = NIL; - List *temp; - List *new_and_args; - - foreach(temp, qual->args) - t_list = lappend(t_list, qual_cleanup(lfirst(temp))); + Expr *clause = lfirst(temp); - new_and_args = remove_duplicates(t_list); + if (and_clause((Node *) clause)) + { + int nclauses = length(clause->args); - if (length(new_and_args) > 1) - return (List *) make_andclause(new_and_args); - else - return lfirst(new_and_args); + if (nclauses > num_subclauses) + { + distributable = clause; + num_subclauses = nclauses; + } + } } - else if (or_clause((Node *) qual)) - { - List *t_list = NIL; - List *temp; - List *new_or_args; - foreach(temp, qual->args) - t_list = lappend(t_list, qual_cleanup(lfirst(temp))); + /* if there's no suitable AND clause, we can't transform the OR */ + if (! distributable) + return make_orclause(orlist); - new_or_args = remove_duplicates(t_list); + /* Caution: lremove destructively modifies the input orlist. + * This should be OK, since or_normalize is only called with + * freshly constructed lists that are not referenced elsewhere. + */ + orlist = lremove(distributable, orlist); - if (length(new_or_args) > 1) - return (List *) make_orclause(new_or_args); - else - return lfirst(new_or_args); + foreach(temp, distributable->args) + { + Expr *andclause = lfirst(temp); + + /* pull_ors is needed here in case andclause has a top-level OR. + * Then we recursively apply or_normalize, since there might + * be an AND subclause in the resulting OR-list. + * Note: we rely on pull_ors to build a fresh list, + * and not damage the given orlist. + */ + andclause = or_normalize(pull_ors(lcons(andclause, orlist))); + andclauses = lappend(andclauses, andclause); } - else if (not_clause((Node *) qual)) - return (List *) make_notclause((Expr *) qual_cleanup((Expr *) get_notclausearg(qual))); - else - return (List *) qual; + + /* pull_ands is needed in case any sub-or_normalize succeeded */ + return make_andclause(pull_ands(andclauses)); } -/*-------------------- - * flatten_andors - * Given a qualification, simplify nested AND/OR clauses into flat - * AND/OR clauses with more arguments. - * - * The parser regards AND and OR as purely binary operators, so a qual like - * (A = 1) OR (A = 2) OR (A = 3) ... - * will produce a nested parsetree - * (OR (A = 1) (OR (A = 2) (OR (A = 3) ...))) - * In reality, the optimizer and executor regard AND and OR as n-argument - * operators, so this tree can be flattened to - * (OR (A = 1) (A = 2) (A = 3) ...) - * which is the responsibility of this routine. +/* + * find_ands + * Given a qualification tree with the 'not's pushed down, convert it + * to a tree in DNF by repeatedly applying the rule: + * ("AND" A ("OR" B C)) => ("OR" ("AND" A B) ("AND" A C)) * - * If 'deep' is true, we search the whole tree for AND/ORs to simplify; - * if not, we consider only the top-level AND/OR/NOT structure. + * Note that 'and' clauses will always be turned into 'or' clauses + * if they contain any 'or' subclauses. * - * Returns the rebuilt expr (note original list structure is not touched). - *-------------------- + * Returns the modified qualification. AND/OR flatness is preserved. */ static Expr * -flatten_andors(Expr *qual, bool deep) +find_ands(Expr *qual) { if (qual == NULL) return NULL; - if (and_clause((Node *) qual)) + /* We used to recurse into opclauses here, but I see no reason to... */ + if (or_clause((Node *) qual)) { - List *out_list = NIL; - List *arg; - - foreach(arg, qual->args) - { - Expr *subexpr = flatten_andors((Expr *) lfirst(arg), deep); + List *orlist = NIL; + List *temp; - /* - * Note: we can destructively nconc the subexpression's arglist - * because we know the recursive invocation of flatten_andors - * will have built a new arglist not shared with any other expr. - * Otherwise we'd need a listCopy here. - */ - if (and_clause((Node *) subexpr)) - out_list = nconc(out_list, subexpr->args); - else - out_list = lappend(out_list, subexpr); - } - return make_andclause(out_list); + foreach(temp, qual->args) + orlist = lappend(orlist, find_ands(lfirst(temp))); + return make_orclause(pull_ors(orlist)); } - else if (or_clause((Node *) qual)) + else if (and_clause((Node *) qual)) { - List *out_list = NIL; - List *arg; - - foreach(arg, qual->args) - { - Expr *subexpr = flatten_andors((Expr *) lfirst(arg), deep); + List *andlist = NIL; + List *temp; - /* - * Note: we can destructively nconc the subexpression's arglist - * because we know the recursive invocation of flatten_andors - * will have built a new arglist not shared with any other expr. - * Otherwise we'd need a listCopy here. - */ - if (or_clause((Node *) subexpr)) - out_list = nconc(out_list, subexpr->args); - else - out_list = lappend(out_list, subexpr); - } - return make_orclause(out_list); + foreach(temp, qual->args) + andlist = lappend(andlist, find_ands(lfirst(temp))); + return and_normalize(pull_ands(andlist)); } else if (not_clause((Node *) qual)) - return make_notclause(flatten_andors(get_notclausearg(qual), deep)); - else if (deep && is_opclause((Node *) qual)) - { - Expr *left = (Expr *) get_leftop(qual); - Expr *right = (Expr *) get_rightop(qual); - - if (right) - return make_clause(qual->opType, qual->oper, - lcons(flatten_andors(left, deep), - lcons(flatten_andors(right, deep), - NIL))); - else - return make_clause(qual->opType, qual->oper, - lcons(flatten_andors(left, deep), - NIL)); - } + return make_notclause(find_ands(get_notclausearg(qual))); else return qual; } /* - * pull_ors - * Pull the arguments of an 'or' clause nested within another 'or' - * clause up into the argument list of the parent. + * and_normalize + * Given a list of exprs which are 'and'ed together, try to apply + * the distributive law + * ("AND" A ("OR" B C)) => ("OR" ("AND" A B) ("AND" A C)) + * to convert the top-level AND clause to a top-level OR clause. * - * Input is the arglist of an OR clause. - * Returns the rebuilt arglist (note original list structure is not touched). + * Returns the resulting expression (could be an AND clause, an OR + * clause, or maybe even a single subexpression). */ -static List * -pull_ors(List *orlist) +static Expr * +and_normalize(List *andlist) { - List *out_list = NIL; - List *arg; - - foreach(arg, orlist) - { - Expr *subexpr = (Expr *) lfirst(arg); - - /* - * Note: we can destructively nconc the subexpression's arglist - * because we know the recursive invocation of pull_ors - * will have built a new arglist not shared with any other expr. - * Otherwise we'd need a listCopy here. - */ - if (or_clause((Node *) subexpr)) - out_list = nconc(out_list, pull_ors(subexpr->args)); - else - out_list = lappend(out_list, subexpr); - } - return out_list; -} + Expr *distributable = NULL; + int num_subclauses = 1; + List *orclauses = NIL; + List *temp; -/* - * pull_ands - * Pull the arguments of an 'and' clause nested within another 'and' - * clause up into the argument list of the parent. - * - * Returns the modified list. - */ -static List * -pull_ands(List *andlist) -{ - List *out_list = NIL; - List *arg; + if (andlist == NIL) + return NULL; /* probably can't happen */ + if (lnext(andlist) == NIL) + return lfirst(andlist); /* single-expression AND (can this happen?) */ - foreach(arg, andlist) + /* + * If we have a choice of OR clauses, pick the one with the + * most subclauses. Because we initialized num_subclauses = 1, + * any OR clauses with only one arg will be ignored as useless. + */ + foreach(temp, andlist) { - Expr *subexpr = (Expr *) lfirst(arg); + Expr *clause = lfirst(temp); - /* - * Note: we can destructively nconc the subexpression's arglist - * because we know the recursive invocation of pull_ands - * will have built a new arglist not shared with any other expr. - * Otherwise we'd need a listCopy here. - */ - if (and_clause((Node *) subexpr)) - out_list = nconc(out_list, pull_ands(subexpr->args)); - else - out_list = lappend(out_list, subexpr); - } - return out_list; -} - -/* - * or_normalize - * Given a list of exprs which are 'or'ed together, distribute any - * 'and' clauses. - * - * Returns the modified list. - * - */ -static List * -or_normalize(List *orlist) -{ - List *distributable = NIL; - List *new_orlist = NIL; - List *temp = NIL; - - if (orlist == NIL) - return NIL; - - foreach(temp, orlist) - { - if (and_clause(lfirst(temp))) + if (or_clause((Node *) clause)) { - distributable = lfirst(temp); - break; - } - } - if (distributable) - new_orlist = LispRemove(distributable, orlist); + int nclauses = length(clause->args); - if (new_orlist) - { - return or_normalize(lcons(distribute_args(lfirst(new_orlist), - ((Expr *) distributable)->args), - lnext(new_orlist))); + if (nclauses > num_subclauses) + { + distributable = clause; + num_subclauses = nclauses; + } + } } - else - return orlist; -} -/* - * distribute_args - * Create new 'or' clauses by or'ing 'item' with each element of 'args'. - * E.g.: (distribute-args A ("AND" B C)) => ("AND" ("OR" A B) ("OR" A C)) - * - * Returns an 'and' clause. - * - */ -static List * -distribute_args(List *item, List *args) -{ - List *t_list = NIL; - List *temp; + /* if there's no suitable OR clause, we can't transform the AND */ + if (! distributable) + return make_andclause(andlist); - if (args == NULL) - return item; + /* Caution: lremove destructively modifies the input andlist. + * This should be OK, since and_normalize is only called with + * freshly constructed lists that are not referenced elsewhere. + */ + andlist = lremove(distributable, andlist); - foreach(temp, args) + foreach(temp, distributable->args) { - List *n_list; + Expr *orclause = lfirst(temp); - n_list = or_normalize(pull_ors(lcons(item, - lcons(lfirst(temp), - NIL)))); - t_list = lappend(t_list, make_orclause(n_list)); + /* pull_ands is needed here in case orclause has a top-level AND. + * Then we recursively apply and_normalize, since there might + * be an OR subclause in the resulting AND-list. + * Note: we rely on pull_ands to build a fresh list, + * and not damage the given andlist. + */ + orclause = and_normalize(pull_ands(lcons(orclause, andlist))); + orclauses = lappend(orclauses, orclause); } - return (List *) make_andclause(t_list); -} - -/* - * remove_duplicates - */ -static List * -remove_duplicates(List *list) -{ - List *result = NIL; - List *i; - if (length(list) == 1) - return list; - - foreach(i, list) - { - if (! member(lfirst(i), result)) - result = lappend(result, lfirst(i)); - } - return result; + /* pull_ors is needed in case any sub-and_normalize succeeded */ + return make_orclause(pull_ors(orclauses)); } diff --git a/src/include/optimizer/prep.h b/src/include/optimizer/prep.h index 8e4128b8c60a264401c1abfef9f6e71bcc659095..161419f29d87cc099a864ad1fb092cfd10f11e0a 100644 --- a/src/include/optimizer/prep.h +++ b/src/include/optimizer/prep.h @@ -1,12 +1,12 @@ /*------------------------------------------------------------------------- * * prep.h - * prototypes for files in prep.c + * prototypes for files in optimizer/prep/ * * * Copyright (c) 1994, Regents of the University of California * - * $Id: prep.h,v 1.17 1999/07/16 17:07:34 momjian Exp $ + * $Id: prep.h,v 1.18 1999/09/12 18:08:10 tgl Exp $ * *------------------------------------------------------------------------- */ @@ -20,6 +20,7 @@ * prototypes for prepqual.c */ extern List *cnfify(Expr *qual, bool removeAndFlag); +extern Expr *dnfify(Expr *qual); /* * prototypes for preptlist.c